mirror of
https://github.com/agdamsbo/daDoctoR.git
synced 2024-10-30 02:31:52 +01:00
update
This commit is contained in:
parent
dc288f047b
commit
538b769289
|
@ -1,7 +1,7 @@
|
||||||
Package: daDoctoR
|
Package: daDoctoR
|
||||||
Type: Package
|
Type: Package
|
||||||
Title: FUNCTIONS FOR HEALTH RESEARCH
|
Title: FUNCTIONS FOR HEALTH RESEARCH
|
||||||
Version: 0.1.0.9012
|
Version: 0.1.0.9013
|
||||||
Author@R: c(person("Andreas", "Gammelgaard Damsbo", email = "agdamsbo@pm.me", role = c("cre", "aut")))
|
Author@R: c(person("Andreas", "Gammelgaard Damsbo", email = "agdamsbo@pm.me", role = c("cre", "aut")))
|
||||||
Maintainer: Andreas Gammelgaard Damsbo <agdamsbo@pm.me>
|
Maintainer: Andreas Gammelgaard Damsbo <agdamsbo@pm.me>
|
||||||
Description: I am a Danish medical doctor involved in neuropsychiatric research.
|
Description: I am a Danish medical doctor involved in neuropsychiatric research.
|
||||||
|
|
|
@ -3,9 +3,9 @@
|
||||||
#' For bivariate analyses. The confint() function is rather slow, causing the whole function to hang when including many predictors and calculating the ORs with CI.
|
#' For bivariate analyses. The confint() function is rather slow, causing the whole function to hang when including many predictors and calculating the ORs with CI.
|
||||||
#' @param meas Effect meassure. Input as c() of columnnames, use dput().
|
#' @param meas Effect meassure. Input as c() of columnnames, use dput().
|
||||||
#' @param vars variables in model. Input as c() of columnnames, use dput().
|
#' @param vars variables in model. Input as c() of columnnames, use dput().
|
||||||
#' @param str variables to test. Input as c() of columnnames, use dput().
|
#' @param string variables to test. Input as c() of columnnames, use dput().
|
||||||
#' @param ci flag to get results as OR with 95% confidence interval.
|
#' @param ci flag to get results as OR with 95% confidence interval.
|
||||||
#' @param dta data frame to pull variables from.
|
#' @param data data frame to pull variables from.
|
||||||
#' @param fixed.var flag to set "vars" as fixed in the model. When FALSE, then true bivariate logistic regression is performed.
|
#' @param fixed.var flag to set "vars" as fixed in the model. When FALSE, then true bivariate logistic regression is performed.
|
||||||
#' @keywords logistic
|
#' @keywords logistic
|
||||||
#' @export
|
#' @export
|
||||||
|
@ -21,7 +21,7 @@
|
||||||
#' rep_glm(meas="y",vars="v3",string=preds,ci=F,data=d)
|
#' rep_glm(meas="y",vars="v3",string=preds,ci=F,data=d)
|
||||||
|
|
||||||
|
|
||||||
rep_glm<-function(meas,vars,string,ci=FALSE,data,fixed.var=FALSE){
|
rep_glm<-function(meas,vars=NULL,string,ci=FALSE,data,fixed.var=FALSE){
|
||||||
|
|
||||||
require(broom)
|
require(broom)
|
||||||
y<-data[,c(meas)]
|
y<-data[,c(meas)]
|
||||||
|
|
|
@ -12,7 +12,7 @@
|
||||||
#' @examples
|
#' @examples
|
||||||
#' rep_lm()
|
#' rep_lm()
|
||||||
|
|
||||||
rep_lm<-function(meas,vars,string,ci=FALSE,data,fixed.var=FALSE){
|
rep_lm<-function(meas,vars=NULL,string,ci=FALSE,data,fixed.var=FALSE){
|
||||||
|
|
||||||
require(broom)
|
require(broom)
|
||||||
y<-data[,c(meas)]
|
y<-data[,c(meas)]
|
||||||
|
|
|
@ -4,20 +4,21 @@
|
||||||
\alias{rep_glm}
|
\alias{rep_glm}
|
||||||
\title{A repeated logistic regression function}
|
\title{A repeated logistic regression function}
|
||||||
\usage{
|
\usage{
|
||||||
rep_glm(meas, vars, string, ci = FALSE, data, fixed.var = FALSE)
|
rep_glm(meas, vars = NULL, string, ci = FALSE, data,
|
||||||
|
fixed.var = FALSE)
|
||||||
}
|
}
|
||||||
\arguments{
|
\arguments{
|
||||||
\item{meas}{Effect meassure. Input as c() of columnnames, use dput().}
|
\item{meas}{Effect meassure. Input as c() of columnnames, use dput().}
|
||||||
|
|
||||||
\item{vars}{variables in model. Input as c() of columnnames, use dput().}
|
\item{vars}{variables in model. Input as c() of columnnames, use dput().}
|
||||||
|
|
||||||
|
\item{string}{variables to test. Input as c() of columnnames, use dput().}
|
||||||
|
|
||||||
\item{ci}{flag to get results as OR with 95% confidence interval.}
|
\item{ci}{flag to get results as OR with 95% confidence interval.}
|
||||||
|
|
||||||
|
\item{data}{data frame to pull variables from.}
|
||||||
|
|
||||||
\item{fixed.var}{flag to set "vars" as fixed in the model. When FALSE, then true bivariate logistic regression is performed.}
|
\item{fixed.var}{flag to set "vars" as fixed in the model. When FALSE, then true bivariate logistic regression is performed.}
|
||||||
|
|
||||||
\item{str}{variables to test. Input as c() of columnnames, use dput().}
|
|
||||||
|
|
||||||
\item{dta}{data frame to pull variables from.}
|
|
||||||
}
|
}
|
||||||
\description{
|
\description{
|
||||||
For bivariate analyses. The confint() function is rather slow, causing the whole function to hang when including many predictors and calculating the ORs with CI.
|
For bivariate analyses. The confint() function is rather slow, causing the whole function to hang when including many predictors and calculating the ORs with CI.
|
||||||
|
|
|
@ -4,7 +4,8 @@
|
||||||
\alias{rep_lm}
|
\alias{rep_lm}
|
||||||
\title{A repeated linear regression function}
|
\title{A repeated linear regression function}
|
||||||
\usage{
|
\usage{
|
||||||
rep_lm(meas, vars, string, ci = FALSE, data, fixed.var = FALSE)
|
rep_lm(meas, vars = NULL, string, ci = FALSE, data,
|
||||||
|
fixed.var = FALSE)
|
||||||
}
|
}
|
||||||
\arguments{
|
\arguments{
|
||||||
\item{meas}{Effect meassure. Input as c() of columnnames, use dput().}
|
\item{meas}{Effect meassure. Input as c() of columnnames, use dput().}
|
||||||
|
|
Loading…
Reference in New Issue
Block a user