mirror of
https://github.com/agdamsbo/daDoctoR.git
synced 2024-11-24 12:41:54 +01:00
updates
This commit is contained in:
parent
662d111f0b
commit
3573b74a1b
@ -1,7 +1,7 @@
|
|||||||
Package: daDoctoR
|
Package: daDoctoR
|
||||||
Type: Package
|
Type: Package
|
||||||
Title: FUNCTIONS FOR HEALTH RESEARCH
|
Title: FUNCTIONS FOR HEALTH RESEARCH
|
||||||
Version: 0.1.0.9024
|
Version: 0.1.0.9025
|
||||||
Author: c(person("Andreas", "Gammelgaard Damsbo", email = "agdamsbo@pm.me", role = c("cre", "aut")))
|
Author: c(person("Andreas", "Gammelgaard Damsbo", email = "agdamsbo@pm.me", role = c("cre", "aut")))
|
||||||
Maintainer: Andreas Gammelgaard Damsbo <agdamsbo@pm.me>
|
Maintainer: Andreas Gammelgaard Damsbo <agdamsbo@pm.me>
|
||||||
Description: I am a Danish medical doctor involved in neuropsychiatric research.
|
Description: I am a Danish medical doctor involved in neuropsychiatric research.
|
||||||
|
@ -3,7 +3,7 @@
|
|||||||
#' Printable table of three dimensional regression analysis of group vs var for meas. By group.
|
#' Printable table of three dimensional regression analysis of group vs var for meas. By group.
|
||||||
#' @param meas outcome meassure variable name in data-data.frame as a string. Can be numeric or factor. Result is calculated accordingly.
|
#' @param meas outcome meassure variable name in data-data.frame as a string. Can be numeric or factor. Result is calculated accordingly.
|
||||||
#' @param var binary exposure variable to compare against (active vs placebo). As string.
|
#' @param var binary exposure variable to compare against (active vs placebo). As string.
|
||||||
#' @param groups groups to compare, as string.
|
#' @param group group to compare, as string.
|
||||||
#' @param adj variables to adjust for, as string.
|
#' @param adj variables to adjust for, as string.
|
||||||
#' @param data dataframe of data.
|
#' @param data dataframe of data.
|
||||||
#' @param dec decimals for results, standard is set to 2. Mean and sd is dec-1. pval has 3 decimals.
|
#' @param dec decimals for results, standard is set to 2. Mean and sd is dec-1. pval has 3 decimals.
|
||||||
|
@ -3,7 +3,7 @@
|
|||||||
#' Printable table of three dimensional regression analysis of group vs var for meas. By var. Includes p-values.
|
#' Printable table of three dimensional regression analysis of group vs var for meas. By var. Includes p-values.
|
||||||
#' @param meas outcome meassure variable name in data-data.frame as a string. Can be numeric or factor. Result is calculated accordingly.
|
#' @param meas outcome meassure variable name in data-data.frame as a string. Can be numeric or factor. Result is calculated accordingly.
|
||||||
#' @param var binary exposure variable to compare against (active vs placebo). As string.
|
#' @param var binary exposure variable to compare against (active vs placebo). As string.
|
||||||
#' @param groups groups to compare, as string.
|
#' @param group groups to compare, as string.
|
||||||
#' @param adj variables to adjust for, as string.
|
#' @param adj variables to adjust for, as string.
|
||||||
#' @param data dataframe of data.
|
#' @param data dataframe of data.
|
||||||
#' @param dec decimals for results, standard is set to 2. Mean and sd is dec-1.
|
#' @param dec decimals for results, standard is set to 2. Mean and sd is dec-1.
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
#' Print regression results according to STROBE
|
#' Print ordinal logistic regression results according to STROBE
|
||||||
#'
|
#'
|
||||||
#' Printable table of logistic regression analysis oaccording to STROBE.
|
#' Printable table of ordinal logistic regression analysis oaccording to STROBE. Uses polr() funtion of the MASS-package.
|
||||||
#' @param meas outcome meassure variable name in data-data.frame as a string. Can be numeric or factor. Result is calculated accordingly.
|
#' @param meas outcome meassure variable name in data-data.frame as a string. Can be numeric or factor. Result is calculated accordingly.
|
||||||
#' @param vars variables to compare against. As vector of columnnames.
|
#' @param vars variables to compare against. As vector of columnnames.
|
||||||
#' @param data dataframe of data.
|
#' @param data dataframe of data.
|
||||||
|
@ -1,15 +1,16 @@
|
|||||||
#' Regression model of predictors according to STROBE, bi- and multivariate.
|
#' Regression model of predictors according to STROBE, bi- and multivariate.
|
||||||
#'
|
#'
|
||||||
#' Printable table of regression model according to STROBE. Includes borth bivariate and multivariate in the same table. Output is a list, with the first item being the main "output" as a dataframe. Automatically uses logistic regression model for dichotomous outcome variable and linear regression model for continous outcome variable.
|
#' Printable table of regression model according to STROBE. Includes borth bivariate and multivariate in the same table. Output is a list, with the first item being the main "output" as a dataframe. Automatically uses logistic regression model for dichotomous outcome variable and linear regression model for continous outcome variable. Linear regression will give estimated adjusted true mean in list.
|
||||||
#' @param meas binary outcome meassure variable, column name in data.frame as a string. Can be numeric or factor. Result is calculated accordingly.
|
#' @param meas binary outcome meassure variable, column name in data.frame as a string. Can be numeric or factor. Result is calculated accordingly.
|
||||||
#' @param adj variables to adjust for, as string.
|
#' @param adj variables to adjust for, as string.
|
||||||
#' @param data dataframe of data.
|
#' @param data dataframe of data.
|
||||||
#' @param dec decimals for results, standard is set to 2. Mean and sd is dec-1.
|
#' @param dec decimals for results, standard is set to 2. Mean and sd is dec-1.
|
||||||
#' @param n.by.adj flag to indicate wether to count number of patients in adjusted model or overall for outcome meassure not NA.
|
#' @param n.by.adj flag to indicate wether to count number of patients in adjusted model or overall for outcome meassure not NA.
|
||||||
|
#' @param p.val flag to include p-values in linear regression for now, set to FALSE as standard.
|
||||||
#' @keywords logistic
|
#' @keywords logistic
|
||||||
#' @export
|
#' @export
|
||||||
|
|
||||||
strobe_pred<-function(meas,adj,data,dec=2,n.by.adj=FALSE){
|
strobe_pred<-function(meas,adj,data,dec=2,n.by.adj=FALSE,p.val=FALSE){
|
||||||
## Ønskeliste:
|
## Ønskeliste:
|
||||||
##
|
##
|
||||||
## - Tæl selv antal a NA'er
|
## - Tæl selv antal a NA'er
|
||||||
@ -178,7 +179,7 @@ strobe_pred<-function(meas,adj,data,dec=2,n.by.adj=FALSE){
|
|||||||
ads<-d[,c(adj)]
|
ads<-d[,c(adj)]
|
||||||
|
|
||||||
dfcr<-data.frame(matrix(NA,ncol = 3))
|
dfcr<-data.frame(matrix(NA,ncol = 3))
|
||||||
names(dfcr)<-c("pred","mean_ci","pv")
|
names(dfcr)<-c("pred","dif_ci","pv")
|
||||||
n.mn<-c()
|
n.mn<-c()
|
||||||
|
|
||||||
nref<-c()
|
nref<-c()
|
||||||
@ -192,9 +193,13 @@ strobe_pred<-function(meas,adj,data,dec=2,n.by.adj=FALSE){
|
|||||||
suppressMessages(ci<-confint(mn))
|
suppressMessages(ci<-confint(mn))
|
||||||
l<-round(ci[-1,1],dec)
|
l<-round(ci[-1,1],dec)
|
||||||
u<-round(ci[-1,2],dec)
|
u<-round(ci[-1,2],dec)
|
||||||
mean<-round(coef(mn)[-1],dec)
|
dif<-round(coef(mn)[-1],dec)
|
||||||
mean_ci<-paste0(mean," (",l," to ",u,")")
|
dif_ci<-paste0(dif," (",l," to ",u,")")
|
||||||
pv<-round(tidy(mn)$p.value[-1],dec+1)
|
pv<-round(tidy(mn)$p.value[-1],dec+1)
|
||||||
|
pv<-ifelse(pv<0.001,"<0.001",round(pv,3))
|
||||||
|
pv <- ifelse(pv<=0.05|pv=="<0.001",paste0("*",pv),
|
||||||
|
ifelse(pv>0.05&pv<=0.1,paste0(".",pv),pv))
|
||||||
|
|
||||||
x1<-ads[,i]
|
x1<-ads[,i]
|
||||||
|
|
||||||
if (is.factor(x1)){
|
if (is.factor(x1)){
|
||||||
@ -205,7 +210,7 @@ strobe_pred<-function(meas,adj,data,dec=2,n.by.adj=FALSE){
|
|||||||
pred<-names(ads)[i]
|
pred<-names(ads)[i]
|
||||||
}
|
}
|
||||||
|
|
||||||
dfcr<-rbind(dfcr,cbind(pred,mean_ci,pv))
|
dfcr<-rbind(dfcr,cbind(pred,dif_ci,pv))
|
||||||
}
|
}
|
||||||
|
|
||||||
## Mutually adjusted ORs
|
## Mutually adjusted ORs
|
||||||
@ -214,6 +219,7 @@ strobe_pred<-function(meas,adj,data,dec=2,n.by.adj=FALSE){
|
|||||||
ma <- lm(m ~ ., data = dat)
|
ma <- lm(m ~ ., data = dat)
|
||||||
miss<-length(ma$na.action)
|
miss<-length(ma$na.action)
|
||||||
|
|
||||||
|
|
||||||
actable <- coef(summary(ma))
|
actable <- coef(summary(ma))
|
||||||
pa <- actable[,4]
|
pa <- actable[,4]
|
||||||
pa<-ifelse(pa<0.001,"<0.001",round(pa,3))
|
pa<-ifelse(pa<0.001,"<0.001",round(pa,3))
|
||||||
@ -228,6 +234,8 @@ strobe_pred<-function(meas,adj,data,dec=2,n.by.adj=FALSE){
|
|||||||
aup<-aci[,2]
|
aup<-aci[,2]
|
||||||
amean_ci<-paste0(aco," (",alo," to ",aup,")")
|
amean_ci<-paste0(aco," (",alo," to ",aup,")")
|
||||||
|
|
||||||
|
mean_est<-amean_ci[[1]]
|
||||||
|
|
||||||
|
|
||||||
nq<-c()
|
nq<-c()
|
||||||
|
|
||||||
@ -312,12 +320,19 @@ strobe_pred<-function(meas,adj,data,dec=2,n.by.adj=FALSE){
|
|||||||
|
|
||||||
suppressWarnings(re<-left_join(df,dfcr,by="names"))
|
suppressWarnings(re<-left_join(df,dfcr,by="names"))
|
||||||
|
|
||||||
ref<-data.frame(re[,1],re[,2],re[,5],re[,3])
|
if (p.val==TRUE){
|
||||||
|
ref<-data.frame(re[,1],re[,2],re[,5],re[,6],re[,3],re[,4])
|
||||||
|
|
||||||
names(ref)<-c("Variable",paste0("N=",n.meas),"Crude OR (95 % CI)","Mutually adjusted OR (95 % CI)")
|
names(ref)<-c("Variable",paste0("N=",n.meas),"Difference (95 % CI)","p-value","Mutually adjusted difference (95 % CI)","A p-value")
|
||||||
|
}
|
||||||
|
else{
|
||||||
|
ref<-data.frame(re[,1],re[,2],re[,5],re[,3])
|
||||||
|
|
||||||
ls<-list(tbl=ref,miss,n.meas,nrow(d))
|
names(ref)<-c("Variable",paste0("N=",n.meas),"Difference (95 % CI)","Mutually adjusted difference (95 % CI)")
|
||||||
names(ls)<-c("Printable table","Deleted due to missingness in adjusted analysis","Number of outcome observations","Length of dataframe")
|
}
|
||||||
|
|
||||||
|
ls<-list(tbl=ref,miss,n.meas,nrow(d),mean_est)
|
||||||
|
names(ls)<-c("Printable table","Deleted due to missingness in adjusted analysis","Number of outcome observations","Length of dataframe","Estimated true mean (95 % CI) in adjusted analysis")
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -11,13 +11,13 @@ strobe_diff_bygroup(meas, var, group, adj, data, dec = 2)
|
|||||||
|
|
||||||
\item{var}{binary exposure variable to compare against (active vs placebo). As string.}
|
\item{var}{binary exposure variable to compare against (active vs placebo). As string.}
|
||||||
|
|
||||||
|
\item{group}{group to compare, as string.}
|
||||||
|
|
||||||
\item{adj}{variables to adjust for, as string.}
|
\item{adj}{variables to adjust for, as string.}
|
||||||
|
|
||||||
\item{data}{dataframe of data.}
|
\item{data}{dataframe of data.}
|
||||||
|
|
||||||
\item{dec}{decimals for results, standard is set to 2. Mean and sd is dec-1. pval has 3 decimals.}
|
\item{dec}{decimals for results, standard is set to 2. Mean and sd is dec-1. pval has 3 decimals.}
|
||||||
|
|
||||||
\item{groups}{groups to compare, as string.}
|
|
||||||
}
|
}
|
||||||
\description{
|
\description{
|
||||||
Printable table of three dimensional regression analysis of group vs var for meas. By group.
|
Printable table of three dimensional regression analysis of group vs var for meas. By group.
|
||||||
|
@ -11,13 +11,13 @@ strobe_diff_byvar(meas, var, group, adj, data, dec = 2)
|
|||||||
|
|
||||||
\item{var}{binary exposure variable to compare against (active vs placebo). As string.}
|
\item{var}{binary exposure variable to compare against (active vs placebo). As string.}
|
||||||
|
|
||||||
|
\item{group}{groups to compare, as string.}
|
||||||
|
|
||||||
\item{adj}{variables to adjust for, as string.}
|
\item{adj}{variables to adjust for, as string.}
|
||||||
|
|
||||||
\item{data}{dataframe of data.}
|
\item{data}{dataframe of data.}
|
||||||
|
|
||||||
\item{dec}{decimals for results, standard is set to 2. Mean and sd is dec-1.}
|
\item{dec}{decimals for results, standard is set to 2. Mean and sd is dec-1.}
|
||||||
|
|
||||||
\item{groups}{groups to compare, as string.}
|
|
||||||
}
|
}
|
||||||
\description{
|
\description{
|
||||||
Printable table of three dimensional regression analysis of group vs var for meas. By var. Includes p-values.
|
Printable table of three dimensional regression analysis of group vs var for meas. By var. Includes p-values.
|
||||||
|
@ -2,7 +2,7 @@
|
|||||||
% Please edit documentation in R/strobe_olr.R
|
% Please edit documentation in R/strobe_olr.R
|
||||||
\name{strobe_olr}
|
\name{strobe_olr}
|
||||||
\alias{strobe_olr}
|
\alias{strobe_olr}
|
||||||
\title{Print regression results according to STROBE}
|
\title{Print ordinal logistic regression results according to STROBE}
|
||||||
\usage{
|
\usage{
|
||||||
strobe_olr(meas, vars, data, dec = 2)
|
strobe_olr(meas, vars, data, dec = 2)
|
||||||
}
|
}
|
||||||
@ -16,6 +16,6 @@ strobe_olr(meas, vars, data, dec = 2)
|
|||||||
\item{dec}{decimals for results, standard is set to 2. Mean and sd is dec-1.}
|
\item{dec}{decimals for results, standard is set to 2. Mean and sd is dec-1.}
|
||||||
}
|
}
|
||||||
\description{
|
\description{
|
||||||
Printable table of logistic regression analysis oaccording to STROBE.
|
Printable table of ordinal logistic regression analysis oaccording to STROBE. Uses polr() funtion of the MASS-package.
|
||||||
}
|
}
|
||||||
\keyword{olr}
|
\keyword{olr}
|
||||||
|
@ -4,7 +4,8 @@
|
|||||||
\alias{strobe_pred}
|
\alias{strobe_pred}
|
||||||
\title{Regression model of predictors according to STROBE, bi- and multivariate.}
|
\title{Regression model of predictors according to STROBE, bi- and multivariate.}
|
||||||
\usage{
|
\usage{
|
||||||
strobe_pred(meas, adj, data, dec = 2, n.by.adj = FALSE)
|
strobe_pred(meas, adj, data, dec = 2, n.by.adj = FALSE,
|
||||||
|
p.val = FALSE)
|
||||||
}
|
}
|
||||||
\arguments{
|
\arguments{
|
||||||
\item{meas}{binary outcome meassure variable, column name in data.frame as a string. Can be numeric or factor. Result is calculated accordingly.}
|
\item{meas}{binary outcome meassure variable, column name in data.frame as a string. Can be numeric or factor. Result is calculated accordingly.}
|
||||||
@ -16,8 +17,10 @@ strobe_pred(meas, adj, data, dec = 2, n.by.adj = FALSE)
|
|||||||
\item{dec}{decimals for results, standard is set to 2. Mean and sd is dec-1.}
|
\item{dec}{decimals for results, standard is set to 2. Mean and sd is dec-1.}
|
||||||
|
|
||||||
\item{n.by.adj}{flag to indicate wether to count number of patients in adjusted model or overall for outcome meassure not NA.}
|
\item{n.by.adj}{flag to indicate wether to count number of patients in adjusted model or overall for outcome meassure not NA.}
|
||||||
|
|
||||||
|
\item{p.val}{flag to include p-values in linear regression for now, set to FALSE as standard.}
|
||||||
}
|
}
|
||||||
\description{
|
\description{
|
||||||
Printable table of regression model according to STROBE. Includes borth bivariate and multivariate in the same table. Output is a list, with the first item being the main "output" as a dataframe. Automatically uses logistic regression model for dichotomous outcome variable and linear regression model for continous outcome variable.
|
Printable table of regression model according to STROBE. Includes borth bivariate and multivariate in the same table. Output is a list, with the first item being the main "output" as a dataframe. Automatically uses logistic regression model for dichotomous outcome variable and linear regression model for continous outcome variable. Linear regression will give estimated adjusted true mean in list.
|
||||||
}
|
}
|
||||||
\keyword{logistic}
|
\keyword{logistic}
|
||||||
|
Loading…
Reference in New Issue
Block a user