resolving commit

This commit is contained in:
Andreas Gammelgaard Damsbo 2021-06-11 13:43:56 +02:00
parent 09719ea905
commit 23827402f8
16 changed files with 35 additions and 104 deletions

View File

@ -1,10 +1,6 @@
Package: daDoctoR
Title: Functions For Health Research
<<<<<<< HEAD
Version: 0.21.7
=======
Version: 0.21.5
>>>>>>> d8ffa3dc7b67e43a846bbd58e055a141a010b304
Version: 0.21.8
Year: 2021
Author: Andreas Gammelgaard Damsbo <agdamsbo@pm.me>
Maintainer: Andreas Gammelgaard Damsbo <agdamsbo@pm.me>

View File

@ -1,6 +1,6 @@
#' REWRITE UNDERWAY
#' Print regression results in table
#'
#' Print regression results according to STROBE
#' New function ready for revision / rewrite
#'
#' Printable table of two dimensional regression analysis of group vs variable for outcome measure. By group. Includes p-value
#' Group and variable has to be dichotomous factor.
@ -16,14 +16,9 @@
#' data('mtcars')
#' mtcars$vs<-factor(mtcars$vs)
#' mtcars$am<-factor(mtcars$am)
#' strobe_diff_bygroup(meas="mpg",var="vs",group = "am",adj=c("disp","wt"),data=mtcars)
#' print_diff_bygroup(meas="mpg",var="vs",group = "am",adj=c("disp","wt"),data=mtcars)
<<<<<<< HEAD
print_diff_bygroup<-function(meas,var,group,adj,data,dec=2){
=======
strobe_diff_bygroup<-function(meas,var,group,adj,data,dec=2){
>>>>>>> d8ffa3dc7b67e43a846bbd58e055a141a010b304
## meas: sdmt
## var: rtreat
## group: genotype

View File

@ -1,6 +1,6 @@
#' REWRITE UNDERWAY
#' Printable table of three dimensional regression analysis
#'
#' Print regression results according to STROBE
#' New function ready for revision
#'
#' Printable table of three dimensional regression analysis of group vs var for meas. By var. Includes p-values.
#' @param meas outcome meassure variable name in data-data.frame as a string. Can be numeric or factor. Result is calculated accordingly.
@ -9,20 +9,15 @@
#' @param adj variables to adjust for, as string.
#' @param data dataframe of data.
#' @param dec decimals for results, standard is set to 2. Mean and sd is dec-1.
#' @keywords strobe
#' @keywords table
#' @export
#' @examples
#' data('mtcars')
#' mtcars$vs<-factor(mtcars$vs)
#' mtcars$am<-factor(mtcars$am)
#' strobe_diff_byvar(meas="mpg",var="vs",group = "am",adj=c("disp","wt","hp"),data=mtcars)
#' print_diff_byvar(meas="mpg",var="vs",group = "am",adj=c("disp","wt","hp"),data=mtcars)
<<<<<<< HEAD
print_diff_byvar<-function(meas,var,group,adj,data,dec=2){
=======
strobe_diff_byvar<-function(meas,var,group,adj,data,dec=2){
>>>>>>> d8ffa3dc7b67e43a846bbd58e055a141a010b304
## meas: sdmt
## var: rtreat
## group: genotype

View File

@ -1,6 +1,8 @@
#' Print regression results according to STROBE
#' Print regression results in table
#'
#' Printable table of logistic regression analysis according to STROBE.
#' New function ready for revision
#'
#' Printable table of logistic regression analysis. Leaves out other variables from results.
#' @param meas outcome meassure variable name in data-data.frame as a string. Can be numeric or factor. Result is calculated accordingly.
#' @param var exposure variable to compare against (active vs placebo). As string.
#' @param adj variables to adjust for, as string.
@ -9,11 +11,7 @@
#' @keywords logistic
#' @export
<<<<<<< HEAD
print_log<-function(meas,var,adj,data,dec=2){
=======
strobe_log<-function(meas,var,adj,data,dec=2){
>>>>>>> d8ffa3dc7b67e43a846bbd58e055a141a010b304
## Ønskeliste:
##
## - Sum af alle, der indgår (Overall N)

View File

@ -1,7 +1,7 @@
#' Print ordinal logistic regression results according to STROBE
#' Print ordinal logistic regression results in table
#'
#' Printable table of ordinal logistic regression with bivariate and multivariate analyses.
#' Table according to STROBE. Uses polr() funtion of the MASS-package.
#' Uses polr() funtion of the MASS-package. Prints table.
#' Formula analysed is the most simple m~v1+v2+vn. The is no significance test. Results are point estimates with 95 percent CI.
#' @param meas outcome meassure variable name or response in data-data.frame as a string. Should be factor, preferably ordered.
#' @param vars variables to compare against. As vector of columnnames.
@ -11,11 +11,7 @@
#' @keywords olr
#' @export
<<<<<<< HEAD
print_olr<-function(meas,vars,data,dec=2,n.by.adj=FALSE){
=======
strobe_olr<-function(meas,vars,data,dec=2,n.by.adj=FALSE){
>>>>>>> d8ffa3dc7b67e43a846bbd58e055a141a010b304
## For calculation of p-value from t-value see rep_olr()
require(MASS)

View File

@ -1,4 +1,4 @@
#' Regression model of predictors according to STROBE, bi- and multivariable.
#' Regression model of predictors according to STROBE, bi- and multivariable. Printable result.
#'
#' Printable table of regression model according to STROBE for linear or binary outcome-variables.
#' Includes both bivariate and multivariate in the same table.
@ -14,11 +14,7 @@
#' @keywords logistic
#' @export
<<<<<<< HEAD
print_pred<-function(meas,adj,data,dec=2,n.by.adj=FALSE,p.val=FALSE){
=======
strobe_pred<-function(meas,adj,data,dec=2,n.by.adj=FALSE,p.val=FALSE){
>>>>>>> d8ffa3dc7b67e43a846bbd58e055a141a010b304
## Wish list:
## - SPEED, maybe flags to include/exclude time consuming tasks

View File

@ -2,7 +2,7 @@
% Please edit documentation in R/print_diff_bygroup.R
\name{print_diff_bygroup}
\alias{print_diff_bygroup}
\title{REWRITE UNDERWAY}
\title{Print regression results in table}
\usage{
print_diff_bygroup(meas, var, group, adj, data, dec = 2)
}
@ -20,7 +20,7 @@ print_diff_bygroup(meas, var, group, adj, data, dec = 2)
\item{dec}{decimals for results, standard is set to 2. Mean and sd is dec-1. pval has 3 decimals.}
}
\description{
Print regression results according to STROBE
New function ready for revision / rewrite
}
\details{
Printable table of two dimensional regression analysis of group vs variable for outcome measure. By group. Includes p-value
@ -30,6 +30,6 @@ Group and variable has to be dichotomous factor.
data('mtcars')
mtcars$vs<-factor(mtcars$vs)
mtcars$am<-factor(mtcars$am)
strobe_diff_bygroup(meas="mpg",var="vs",group = "am",adj=c("disp","wt"),data=mtcars)
print_diff_bygroup(meas="mpg",var="vs",group = "am",adj=c("disp","wt"),data=mtcars)
}
\keyword{strobe}

View File

@ -2,7 +2,7 @@
% Please edit documentation in R/print_diff_byvar.R
\name{print_diff_byvar}
\alias{print_diff_byvar}
\title{REWRITE UNDERWAY}
\title{Printable table of three dimensional regression analysis}
\usage{
print_diff_byvar(meas, var, group, adj, data, dec = 2)
}
@ -20,7 +20,7 @@ print_diff_byvar(meas, var, group, adj, data, dec = 2)
\item{dec}{decimals for results, standard is set to 2. Mean and sd is dec-1.}
}
\description{
Print regression results according to STROBE
New function ready for revision
}
\details{
Printable table of three dimensional regression analysis of group vs var for meas. By var. Includes p-values.
@ -29,6 +29,6 @@ Printable table of three dimensional regression analysis of group vs var for mea
data('mtcars')
mtcars$vs<-factor(mtcars$vs)
mtcars$am<-factor(mtcars$am)
strobe_diff_byvar(meas="mpg",var="vs",group = "am",adj=c("disp","wt","hp"),data=mtcars)
print_diff_byvar(meas="mpg",var="vs",group = "am",adj=c("disp","wt","hp"),data=mtcars)
}
\keyword{strobe}
\keyword{table}

View File

@ -2,7 +2,7 @@
% Please edit documentation in R/print_log.R
\name{print_log}
\alias{print_log}
\title{Print regression results according to STROBE}
\title{Print regression results in table}
\usage{
print_log(meas, var, adj, data, dec = 2)
}
@ -18,6 +18,9 @@ print_log(meas, var, adj, data, dec = 2)
\item{dec}{decimals for results, standard is set to 2. Mean and sd is dec-1.}
}
\description{
Printable table of logistic regression analysis according to STROBE.
New function ready for revision
}
\details{
Printable table of logistic regression analysis. Leaves out other variables from results.
}
\keyword{logistic}

View File

@ -2,7 +2,7 @@
% Please edit documentation in R/print_olr.R
\name{print_olr}
\alias{print_olr}
\title{Print ordinal logistic regression results according to STROBE}
\title{Print ordinal logistic regression results in table}
\usage{
print_olr(meas, vars, data, dec = 2, n.by.adj = FALSE)
}
@ -19,7 +19,7 @@ print_olr(meas, vars, data, dec = 2, n.by.adj = FALSE)
}
\description{
Printable table of ordinal logistic regression with bivariate and multivariate analyses.
Table according to STROBE. Uses polr() funtion of the MASS-package.
Uses polr() funtion of the MASS-package. Prints table.
Formula analysed is the most simple m~v1+v2+vn. The is no significance test. Results are point estimates with 95 percent CI.
}
\keyword{olr}

View File

@ -2,7 +2,7 @@
% Please edit documentation in R/print_pred.R
\name{print_pred}
\alias{print_pred}
\title{Regression model of predictors according to STROBE, bi- and multivariable.}
\title{Regression model of predictors according to STROBE, bi- and multivariable. Printable result.}
\usage{
print_pred(meas, adj, data, dec = 2, n.by.adj = FALSE, p.val = FALSE)
}

View File

@ -1,11 +1,9 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/print_diff_bygroup.R, R/strobe_diff_bygroup.R
% Please edit documentation in R/strobe_diff_bygroup.R
\name{strobe_diff_bygroup}
\alias{strobe_diff_bygroup}
\title{REWRITE UNDERWAY - replaced by 'print_diff_bygroup'}
\usage{
strobe_diff_bygroup(meas, var, group, adj, data, dec = 2)
strobe_diff_bygroup(meas, var, group, adj, data, dec = 2)
}
\arguments{
@ -22,14 +20,9 @@ strobe_diff_bygroup(meas, var, group, adj, data, dec = 2)
\item{dec}{decimals for results, standard is set to 2. Mean and sd is dec-1. pval has 3 decimals.}
}
\description{
Print regression results according to STROBE
Print regression results according to STROBE
}
\details{
Printable table of two dimensional regression analysis of group vs variable for outcome measure. By group. Includes p-value
Group and variable has to be dichotomous factor.
Printable table of two dimensional regression analysis of group vs variable for outcome measure. By group. Includes p-value
Group and variable has to be dichotomous factor.
}
@ -38,9 +31,5 @@ Group and variable has to be dichotomous factor.
mtcars$vs<-factor(mtcars$vs)
mtcars$am<-factor(mtcars$am)
strobe_diff_bygroup(meas="mpg",var="vs",group = "am",adj=c("disp","wt"),data=mtcars)
data('mtcars')
mtcars$vs<-factor(mtcars$vs)
mtcars$am<-factor(mtcars$am)
strobe_diff_bygroup(meas="mpg",var="vs",group = "am",adj=c("disp","wt"),data=mtcars)
}
\keyword{strobe}

View File

@ -1,11 +1,9 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/print_diff_byvar.R, R/strobe_diff_byvar.R
% Please edit documentation in R/strobe_diff_byvar.R
\name{strobe_diff_byvar}
\alias{strobe_diff_byvar}
\title{REWRITE UNDERWAY - replaced by 'print_diff_byvar'}
\usage{
strobe_diff_byvar(meas, var, group, adj, data, dec = 2)
strobe_diff_byvar(meas, var, group, adj, data, dec = 2)
}
\arguments{
@ -22,13 +20,9 @@ strobe_diff_byvar(meas, var, group, adj, data, dec = 2)
\item{dec}{decimals for results, standard is set to 2. Mean and sd is dec-1.}
}
\description{
Print regression results according to STROBE
Print regression results according to STROBE
}
\details{
Printable table of three dimensional regression analysis of group vs var for meas. By var. Includes p-values.
Printable table of three dimensional regression analysis of group vs var for meas. By var. Includes p-values.
}
\examples{
@ -36,9 +30,5 @@ Printable table of three dimensional regression analysis of group vs var for mea
mtcars$vs<-factor(mtcars$vs)
mtcars$am<-factor(mtcars$am)
strobe_diff_byvar(meas="mpg",var="vs",group = "am",adj=c("disp","wt","hp"),data=mtcars)
data('mtcars')
mtcars$vs<-factor(mtcars$vs)
mtcars$am<-factor(mtcars$am)
strobe_diff_byvar(meas="mpg",var="vs",group = "am",adj=c("disp","wt","hp"),data=mtcars)
}
\keyword{strobe}

View File

@ -1,11 +1,9 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/print_log.R, R/strobe_log.R
% Please edit documentation in R/strobe_log.R
\name{strobe_log}
\alias{strobe_log}
\title{OBSOLETE - use 'print_log'}
\usage{
strobe_log(meas, var, adj, data, dec = 2)
strobe_log(meas, var, adj, data, dec = 2)
}
\arguments{
@ -20,11 +18,6 @@ strobe_log(meas, var, adj, data, dec = 2)
\item{dec}{decimals for results, standard is set to 2. Mean and sd is dec-1.}
}
\description{
Print regression results according to STROBE
}
\details{
Printable table of logistic regression analysis according to STROBE.
Print regression results according to STROBE
}
\details{

View File

@ -1,11 +1,9 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/print_olr.R, R/strobe_olr.R
% Please edit documentation in R/strobe_olr.R
\name{strobe_olr}
\alias{strobe_olr}
\title{OBSOLETE - use 'print_olr'}
\usage{
strobe_olr(meas, vars, data, dec = 2, n.by.adj = FALSE)
strobe_olr(meas, vars, data, dec = 2, n.by.adj = FALSE)
}
\arguments{
@ -20,13 +18,6 @@ strobe_olr(meas, vars, data, dec = 2, n.by.adj = FALSE)
\item{n.by.adj}{flag to indicate wether to count number of patients in adjusted model or overall for outcome meassure not NA.}
}
\description{
Print ordinal logistic regression results according to STROBE
}
\details{
Printable table of ordinal logistic regression with bivariate and multivariate analyses.
Table according to STROBE. Uses polr() funtion of the MASS-package.
Formula analysed is the most simple m~v1+v2+vn. The is no significance test. Results are point estimates with 95 percent CI.
Print ordinal logistic regression results according to STROBE
}
\details{

View File

@ -1,11 +1,9 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/print_pred.R, R/strobe_pred.R
% Please edit documentation in R/strobe_pred.R
\name{strobe_pred}
\alias{strobe_pred}
\title{OBSOLETE - use 'print_pred'}
\usage{
strobe_pred(meas, adj, data, dec = 2, n.by.adj = FALSE, p.val = FALSE)
strobe_pred(meas, adj, data, dec = 2, n.by.adj = FALSE, p.val = FALSE)
}
\arguments{
@ -22,15 +20,6 @@ strobe_pred(meas, adj, data, dec = 2, n.by.adj = FALSE, p.val = FALSE)
\item{p.val}{flag to include p-values in table, set to FALSE as standard.}
}
\description{
Regression model of predictors according to STROBE, bi- and multivariable.
}
\details{
Printable table of regression model according to STROBE for linear or binary outcome-variables.
Includes both bivariate and multivariate in the same table.
Output is a list, with the first item being the main "output" as a dataframe.
Automatically uses logistic regression model for dichotomous outcome variable and linear regression model for continuous outcome variable. Linear regression will give estimated adjusted true mean in list.
For logistic regression gives count of outcome variable pr variable level.
Regression model of predictors according to STROBE, bi- and multivariable.
}
\details{