mirror of
https://github.com/agdamsbo/daDoctoR.git
synced 2024-11-21 19:30:22 +01:00
resolving commit
This commit is contained in:
parent
09719ea905
commit
23827402f8
@ -1,10 +1,6 @@
|
||||
Package: daDoctoR
|
||||
Title: Functions For Health Research
|
||||
<<<<<<< HEAD
|
||||
Version: 0.21.7
|
||||
=======
|
||||
Version: 0.21.5
|
||||
>>>>>>> d8ffa3dc7b67e43a846bbd58e055a141a010b304
|
||||
Version: 0.21.8
|
||||
Year: 2021
|
||||
Author: Andreas Gammelgaard Damsbo <agdamsbo@pm.me>
|
||||
Maintainer: Andreas Gammelgaard Damsbo <agdamsbo@pm.me>
|
||||
|
@ -1,6 +1,6 @@
|
||||
#' REWRITE UNDERWAY
|
||||
#' Print regression results in table
|
||||
#'
|
||||
#' Print regression results according to STROBE
|
||||
#' New function ready for revision / rewrite
|
||||
#'
|
||||
#' Printable table of two dimensional regression analysis of group vs variable for outcome measure. By group. Includes p-value
|
||||
#' Group and variable has to be dichotomous factor.
|
||||
@ -16,14 +16,9 @@
|
||||
#' data('mtcars')
|
||||
#' mtcars$vs<-factor(mtcars$vs)
|
||||
#' mtcars$am<-factor(mtcars$am)
|
||||
#' strobe_diff_bygroup(meas="mpg",var="vs",group = "am",adj=c("disp","wt"),data=mtcars)
|
||||
#' print_diff_bygroup(meas="mpg",var="vs",group = "am",adj=c("disp","wt"),data=mtcars)
|
||||
|
||||
<<<<<<< HEAD
|
||||
print_diff_bygroup<-function(meas,var,group,adj,data,dec=2){
|
||||
=======
|
||||
strobe_diff_bygroup<-function(meas,var,group,adj,data,dec=2){
|
||||
>>>>>>> d8ffa3dc7b67e43a846bbd58e055a141a010b304
|
||||
|
||||
## meas: sdmt
|
||||
## var: rtreat
|
||||
## group: genotype
|
||||
|
@ -1,6 +1,6 @@
|
||||
#' REWRITE UNDERWAY
|
||||
#' Printable table of three dimensional regression analysis
|
||||
#'
|
||||
#' Print regression results according to STROBE
|
||||
#' New function ready for revision
|
||||
#'
|
||||
#' Printable table of three dimensional regression analysis of group vs var for meas. By var. Includes p-values.
|
||||
#' @param meas outcome meassure variable name in data-data.frame as a string. Can be numeric or factor. Result is calculated accordingly.
|
||||
@ -9,20 +9,15 @@
|
||||
#' @param adj variables to adjust for, as string.
|
||||
#' @param data dataframe of data.
|
||||
#' @param dec decimals for results, standard is set to 2. Mean and sd is dec-1.
|
||||
#' @keywords strobe
|
||||
#' @keywords table
|
||||
#' @export
|
||||
#' @examples
|
||||
#' data('mtcars')
|
||||
#' mtcars$vs<-factor(mtcars$vs)
|
||||
#' mtcars$am<-factor(mtcars$am)
|
||||
#' strobe_diff_byvar(meas="mpg",var="vs",group = "am",adj=c("disp","wt","hp"),data=mtcars)
|
||||
#' print_diff_byvar(meas="mpg",var="vs",group = "am",adj=c("disp","wt","hp"),data=mtcars)
|
||||
|
||||
<<<<<<< HEAD
|
||||
print_diff_byvar<-function(meas,var,group,adj,data,dec=2){
|
||||
=======
|
||||
strobe_diff_byvar<-function(meas,var,group,adj,data,dec=2){
|
||||
>>>>>>> d8ffa3dc7b67e43a846bbd58e055a141a010b304
|
||||
|
||||
## meas: sdmt
|
||||
## var: rtreat
|
||||
## group: genotype
|
||||
|
@ -1,6 +1,8 @@
|
||||
#' Print regression results according to STROBE
|
||||
#' Print regression results in table
|
||||
#'
|
||||
#' Printable table of logistic regression analysis according to STROBE.
|
||||
#' New function ready for revision
|
||||
#'
|
||||
#' Printable table of logistic regression analysis. Leaves out other variables from results.
|
||||
#' @param meas outcome meassure variable name in data-data.frame as a string. Can be numeric or factor. Result is calculated accordingly.
|
||||
#' @param var exposure variable to compare against (active vs placebo). As string.
|
||||
#' @param adj variables to adjust for, as string.
|
||||
@ -9,11 +11,7 @@
|
||||
#' @keywords logistic
|
||||
#' @export
|
||||
|
||||
<<<<<<< HEAD
|
||||
print_log<-function(meas,var,adj,data,dec=2){
|
||||
=======
|
||||
strobe_log<-function(meas,var,adj,data,dec=2){
|
||||
>>>>>>> d8ffa3dc7b67e43a846bbd58e055a141a010b304
|
||||
## Ønskeliste:
|
||||
##
|
||||
## - Sum af alle, der indgår (Overall N)
|
||||
|
@ -1,7 +1,7 @@
|
||||
#' Print ordinal logistic regression results according to STROBE
|
||||
#' Print ordinal logistic regression results in table
|
||||
#'
|
||||
#' Printable table of ordinal logistic regression with bivariate and multivariate analyses.
|
||||
#' Table according to STROBE. Uses polr() funtion of the MASS-package.
|
||||
#' Uses polr() funtion of the MASS-package. Prints table.
|
||||
#' Formula analysed is the most simple m~v1+v2+vn. The is no significance test. Results are point estimates with 95 percent CI.
|
||||
#' @param meas outcome meassure variable name or response in data-data.frame as a string. Should be factor, preferably ordered.
|
||||
#' @param vars variables to compare against. As vector of columnnames.
|
||||
@ -11,11 +11,7 @@
|
||||
#' @keywords olr
|
||||
#' @export
|
||||
|
||||
<<<<<<< HEAD
|
||||
print_olr<-function(meas,vars,data,dec=2,n.by.adj=FALSE){
|
||||
=======
|
||||
strobe_olr<-function(meas,vars,data,dec=2,n.by.adj=FALSE){
|
||||
>>>>>>> d8ffa3dc7b67e43a846bbd58e055a141a010b304
|
||||
## For calculation of p-value from t-value see rep_olr()
|
||||
|
||||
require(MASS)
|
||||
|
@ -1,4 +1,4 @@
|
||||
#' Regression model of predictors according to STROBE, bi- and multivariable.
|
||||
#' Regression model of predictors according to STROBE, bi- and multivariable. Printable result.
|
||||
#'
|
||||
#' Printable table of regression model according to STROBE for linear or binary outcome-variables.
|
||||
#' Includes both bivariate and multivariate in the same table.
|
||||
@ -14,11 +14,7 @@
|
||||
#' @keywords logistic
|
||||
#' @export
|
||||
|
||||
<<<<<<< HEAD
|
||||
print_pred<-function(meas,adj,data,dec=2,n.by.adj=FALSE,p.val=FALSE){
|
||||
=======
|
||||
strobe_pred<-function(meas,adj,data,dec=2,n.by.adj=FALSE,p.val=FALSE){
|
||||
>>>>>>> d8ffa3dc7b67e43a846bbd58e055a141a010b304
|
||||
|
||||
## Wish list:
|
||||
## - SPEED, maybe flags to include/exclude time consuming tasks
|
||||
|
@ -2,7 +2,7 @@
|
||||
% Please edit documentation in R/print_diff_bygroup.R
|
||||
\name{print_diff_bygroup}
|
||||
\alias{print_diff_bygroup}
|
||||
\title{REWRITE UNDERWAY}
|
||||
\title{Print regression results in table}
|
||||
\usage{
|
||||
print_diff_bygroup(meas, var, group, adj, data, dec = 2)
|
||||
}
|
||||
@ -20,7 +20,7 @@ print_diff_bygroup(meas, var, group, adj, data, dec = 2)
|
||||
\item{dec}{decimals for results, standard is set to 2. Mean and sd is dec-1. pval has 3 decimals.}
|
||||
}
|
||||
\description{
|
||||
Print regression results according to STROBE
|
||||
New function ready for revision / rewrite
|
||||
}
|
||||
\details{
|
||||
Printable table of two dimensional regression analysis of group vs variable for outcome measure. By group. Includes p-value
|
||||
@ -30,6 +30,6 @@ Group and variable has to be dichotomous factor.
|
||||
data('mtcars')
|
||||
mtcars$vs<-factor(mtcars$vs)
|
||||
mtcars$am<-factor(mtcars$am)
|
||||
strobe_diff_bygroup(meas="mpg",var="vs",group = "am",adj=c("disp","wt"),data=mtcars)
|
||||
print_diff_bygroup(meas="mpg",var="vs",group = "am",adj=c("disp","wt"),data=mtcars)
|
||||
}
|
||||
\keyword{strobe}
|
||||
|
@ -2,7 +2,7 @@
|
||||
% Please edit documentation in R/print_diff_byvar.R
|
||||
\name{print_diff_byvar}
|
||||
\alias{print_diff_byvar}
|
||||
\title{REWRITE UNDERWAY}
|
||||
\title{Printable table of three dimensional regression analysis}
|
||||
\usage{
|
||||
print_diff_byvar(meas, var, group, adj, data, dec = 2)
|
||||
}
|
||||
@ -20,7 +20,7 @@ print_diff_byvar(meas, var, group, adj, data, dec = 2)
|
||||
\item{dec}{decimals for results, standard is set to 2. Mean and sd is dec-1.}
|
||||
}
|
||||
\description{
|
||||
Print regression results according to STROBE
|
||||
New function ready for revision
|
||||
}
|
||||
\details{
|
||||
Printable table of three dimensional regression analysis of group vs var for meas. By var. Includes p-values.
|
||||
@ -29,6 +29,6 @@ Printable table of three dimensional regression analysis of group vs var for mea
|
||||
data('mtcars')
|
||||
mtcars$vs<-factor(mtcars$vs)
|
||||
mtcars$am<-factor(mtcars$am)
|
||||
strobe_diff_byvar(meas="mpg",var="vs",group = "am",adj=c("disp","wt","hp"),data=mtcars)
|
||||
print_diff_byvar(meas="mpg",var="vs",group = "am",adj=c("disp","wt","hp"),data=mtcars)
|
||||
}
|
||||
\keyword{strobe}
|
||||
\keyword{table}
|
||||
|
@ -2,7 +2,7 @@
|
||||
% Please edit documentation in R/print_log.R
|
||||
\name{print_log}
|
||||
\alias{print_log}
|
||||
\title{Print regression results according to STROBE}
|
||||
\title{Print regression results in table}
|
||||
\usage{
|
||||
print_log(meas, var, adj, data, dec = 2)
|
||||
}
|
||||
@ -18,6 +18,9 @@ print_log(meas, var, adj, data, dec = 2)
|
||||
\item{dec}{decimals for results, standard is set to 2. Mean and sd is dec-1.}
|
||||
}
|
||||
\description{
|
||||
Printable table of logistic regression analysis according to STROBE.
|
||||
New function ready for revision
|
||||
}
|
||||
\details{
|
||||
Printable table of logistic regression analysis. Leaves out other variables from results.
|
||||
}
|
||||
\keyword{logistic}
|
||||
|
@ -2,7 +2,7 @@
|
||||
% Please edit documentation in R/print_olr.R
|
||||
\name{print_olr}
|
||||
\alias{print_olr}
|
||||
\title{Print ordinal logistic regression results according to STROBE}
|
||||
\title{Print ordinal logistic regression results in table}
|
||||
\usage{
|
||||
print_olr(meas, vars, data, dec = 2, n.by.adj = FALSE)
|
||||
}
|
||||
@ -19,7 +19,7 @@ print_olr(meas, vars, data, dec = 2, n.by.adj = FALSE)
|
||||
}
|
||||
\description{
|
||||
Printable table of ordinal logistic regression with bivariate and multivariate analyses.
|
||||
Table according to STROBE. Uses polr() funtion of the MASS-package.
|
||||
Uses polr() funtion of the MASS-package. Prints table.
|
||||
Formula analysed is the most simple m~v1+v2+vn. The is no significance test. Results are point estimates with 95 percent CI.
|
||||
}
|
||||
\keyword{olr}
|
||||
|
@ -2,7 +2,7 @@
|
||||
% Please edit documentation in R/print_pred.R
|
||||
\name{print_pred}
|
||||
\alias{print_pred}
|
||||
\title{Regression model of predictors according to STROBE, bi- and multivariable.}
|
||||
\title{Regression model of predictors according to STROBE, bi- and multivariable. Printable result.}
|
||||
\usage{
|
||||
print_pred(meas, adj, data, dec = 2, n.by.adj = FALSE, p.val = FALSE)
|
||||
}
|
||||
|
@ -1,11 +1,9 @@
|
||||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/print_diff_bygroup.R, R/strobe_diff_bygroup.R
|
||||
% Please edit documentation in R/strobe_diff_bygroup.R
|
||||
\name{strobe_diff_bygroup}
|
||||
\alias{strobe_diff_bygroup}
|
||||
\title{REWRITE UNDERWAY - replaced by 'print_diff_bygroup'}
|
||||
\usage{
|
||||
strobe_diff_bygroup(meas, var, group, adj, data, dec = 2)
|
||||
|
||||
strobe_diff_bygroup(meas, var, group, adj, data, dec = 2)
|
||||
}
|
||||
\arguments{
|
||||
@ -22,14 +20,9 @@ strobe_diff_bygroup(meas, var, group, adj, data, dec = 2)
|
||||
\item{dec}{decimals for results, standard is set to 2. Mean and sd is dec-1. pval has 3 decimals.}
|
||||
}
|
||||
\description{
|
||||
Print regression results according to STROBE
|
||||
|
||||
Print regression results according to STROBE
|
||||
}
|
||||
\details{
|
||||
Printable table of two dimensional regression analysis of group vs variable for outcome measure. By group. Includes p-value
|
||||
Group and variable has to be dichotomous factor.
|
||||
|
||||
Printable table of two dimensional regression analysis of group vs variable for outcome measure. By group. Includes p-value
|
||||
Group and variable has to be dichotomous factor.
|
||||
}
|
||||
@ -38,9 +31,5 @@ Group and variable has to be dichotomous factor.
|
||||
mtcars$vs<-factor(mtcars$vs)
|
||||
mtcars$am<-factor(mtcars$am)
|
||||
strobe_diff_bygroup(meas="mpg",var="vs",group = "am",adj=c("disp","wt"),data=mtcars)
|
||||
data('mtcars')
|
||||
mtcars$vs<-factor(mtcars$vs)
|
||||
mtcars$am<-factor(mtcars$am)
|
||||
strobe_diff_bygroup(meas="mpg",var="vs",group = "am",adj=c("disp","wt"),data=mtcars)
|
||||
}
|
||||
\keyword{strobe}
|
||||
|
@ -1,11 +1,9 @@
|
||||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/print_diff_byvar.R, R/strobe_diff_byvar.R
|
||||
% Please edit documentation in R/strobe_diff_byvar.R
|
||||
\name{strobe_diff_byvar}
|
||||
\alias{strobe_diff_byvar}
|
||||
\title{REWRITE UNDERWAY - replaced by 'print_diff_byvar'}
|
||||
\usage{
|
||||
strobe_diff_byvar(meas, var, group, adj, data, dec = 2)
|
||||
|
||||
strobe_diff_byvar(meas, var, group, adj, data, dec = 2)
|
||||
}
|
||||
\arguments{
|
||||
@ -22,13 +20,9 @@ strobe_diff_byvar(meas, var, group, adj, data, dec = 2)
|
||||
\item{dec}{decimals for results, standard is set to 2. Mean and sd is dec-1.}
|
||||
}
|
||||
\description{
|
||||
Print regression results according to STROBE
|
||||
|
||||
Print regression results according to STROBE
|
||||
}
|
||||
\details{
|
||||
Printable table of three dimensional regression analysis of group vs var for meas. By var. Includes p-values.
|
||||
|
||||
Printable table of three dimensional regression analysis of group vs var for meas. By var. Includes p-values.
|
||||
}
|
||||
\examples{
|
||||
@ -36,9 +30,5 @@ Printable table of three dimensional regression analysis of group vs var for mea
|
||||
mtcars$vs<-factor(mtcars$vs)
|
||||
mtcars$am<-factor(mtcars$am)
|
||||
strobe_diff_byvar(meas="mpg",var="vs",group = "am",adj=c("disp","wt","hp"),data=mtcars)
|
||||
data('mtcars')
|
||||
mtcars$vs<-factor(mtcars$vs)
|
||||
mtcars$am<-factor(mtcars$am)
|
||||
strobe_diff_byvar(meas="mpg",var="vs",group = "am",adj=c("disp","wt","hp"),data=mtcars)
|
||||
}
|
||||
\keyword{strobe}
|
||||
|
@ -1,11 +1,9 @@
|
||||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/print_log.R, R/strobe_log.R
|
||||
% Please edit documentation in R/strobe_log.R
|
||||
\name{strobe_log}
|
||||
\alias{strobe_log}
|
||||
\title{OBSOLETE - use 'print_log'}
|
||||
\usage{
|
||||
strobe_log(meas, var, adj, data, dec = 2)
|
||||
|
||||
strobe_log(meas, var, adj, data, dec = 2)
|
||||
}
|
||||
\arguments{
|
||||
@ -20,11 +18,6 @@ strobe_log(meas, var, adj, data, dec = 2)
|
||||
\item{dec}{decimals for results, standard is set to 2. Mean and sd is dec-1.}
|
||||
}
|
||||
\description{
|
||||
Print regression results according to STROBE
|
||||
}
|
||||
\details{
|
||||
Printable table of logistic regression analysis according to STROBE.
|
||||
|
||||
Print regression results according to STROBE
|
||||
}
|
||||
\details{
|
||||
|
@ -1,11 +1,9 @@
|
||||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/print_olr.R, R/strobe_olr.R
|
||||
% Please edit documentation in R/strobe_olr.R
|
||||
\name{strobe_olr}
|
||||
\alias{strobe_olr}
|
||||
\title{OBSOLETE - use 'print_olr'}
|
||||
\usage{
|
||||
strobe_olr(meas, vars, data, dec = 2, n.by.adj = FALSE)
|
||||
|
||||
strobe_olr(meas, vars, data, dec = 2, n.by.adj = FALSE)
|
||||
}
|
||||
\arguments{
|
||||
@ -20,13 +18,6 @@ strobe_olr(meas, vars, data, dec = 2, n.by.adj = FALSE)
|
||||
\item{n.by.adj}{flag to indicate wether to count number of patients in adjusted model or overall for outcome meassure not NA.}
|
||||
}
|
||||
\description{
|
||||
Print ordinal logistic regression results according to STROBE
|
||||
}
|
||||
\details{
|
||||
Printable table of ordinal logistic regression with bivariate and multivariate analyses.
|
||||
Table according to STROBE. Uses polr() funtion of the MASS-package.
|
||||
Formula analysed is the most simple m~v1+v2+vn. The is no significance test. Results are point estimates with 95 percent CI.
|
||||
|
||||
Print ordinal logistic regression results according to STROBE
|
||||
}
|
||||
\details{
|
||||
|
@ -1,11 +1,9 @@
|
||||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/print_pred.R, R/strobe_pred.R
|
||||
% Please edit documentation in R/strobe_pred.R
|
||||
\name{strobe_pred}
|
||||
\alias{strobe_pred}
|
||||
\title{OBSOLETE - use 'print_pred'}
|
||||
\usage{
|
||||
strobe_pred(meas, adj, data, dec = 2, n.by.adj = FALSE, p.val = FALSE)
|
||||
|
||||
strobe_pred(meas, adj, data, dec = 2, n.by.adj = FALSE, p.val = FALSE)
|
||||
}
|
||||
\arguments{
|
||||
@ -22,15 +20,6 @@ strobe_pred(meas, adj, data, dec = 2, n.by.adj = FALSE, p.val = FALSE)
|
||||
\item{p.val}{flag to include p-values in table, set to FALSE as standard.}
|
||||
}
|
||||
\description{
|
||||
Regression model of predictors according to STROBE, bi- and multivariable.
|
||||
}
|
||||
\details{
|
||||
Printable table of regression model according to STROBE for linear or binary outcome-variables.
|
||||
Includes both bivariate and multivariate in the same table.
|
||||
Output is a list, with the first item being the main "output" as a dataframe.
|
||||
Automatically uses logistic regression model for dichotomous outcome variable and linear regression model for continuous outcome variable. Linear regression will give estimated adjusted true mean in list.
|
||||
For logistic regression gives count of outcome variable pr variable level.
|
||||
|
||||
Regression model of predictors according to STROBE, bi- and multivariable.
|
||||
}
|
||||
\details{
|
||||
|
Loading…
Reference in New Issue
Block a user