This commit is contained in:
agdamsbo 2018-10-04 10:49:05 +02:00
parent a45e3ff586
commit 17f4c83ee4
2 changed files with 65 additions and 61 deletions

View File

@ -1,89 +1,87 @@
#' A repeated linear regression function #' A repeated linear regression function
#' #'
#' For bivariate analyses. #' For bivariate analyses, to determine which variables to include in adjusted model.
#' @param y Effect meassure. #' @param meas Effect meassure. Input as c() of columnnames, use dput().
#' @param v1 Main variable in model #' @param vars variables in model. Input as c() of columnnames, use dput().
#' @param string variables to test. Input as c() of columnnames, use dput().
#' @param ci flag to get results as OR with 95% confidence interval.
#' @param data data frame to pull variables from.
#' @keywords linear regression #' @keywords linear regression
#' @export #' @export
#' @examples #' @examples
#' rep_lm() #' rep_lm()
rep_lm<-function(y,v1,string,ci=FALSE,data,v2=NULL,v3=NULL){ rep_lm<-function(meas,vars,string,ci=FALSE,data){
## x is data.frame of predictors, y is vector of an aoutcome as a factor
## output is returned as coefficient, or if ci=TRUE as coefficient with 95 % CI.
## The confint() function is rather slow, causing the whole function to hang when including many predictors and calculating the ORs with CI.
require(broom) require(broom)
d<-data d<-data
x<-select(d,one_of(c(string))) x<-data.frame(d[,c(string)])
m1<-length(coef(lm(y~v1))) v<-data.frame(d[,c(vars)])
y<-d[,c(meas)]
dt<-cbind(y,v)
m1<-length(coef(lm(y~.,data = dt)))
if (is.factor(y)){stop("Some kind of error message would be nice, but y should not be a factor!")} if (is.factor(y)){stop("Some kind of error message would be nice, but y should not be a factor!")}
if (ci==TRUE){ if (ci==TRUE){
df<-data.frame(matrix(ncol = 4)) df<-data.frame(matrix(ncol = 3))
names(df)<-c("pred","co_ci","pv","t") names(df)<-c("pred","or_ci","pv")
for(i in 1:ncol(x)){ for(i in 1:ncol(x)){
m<-lm(y~v1+x[,i]) dat<-cbind(dt,x[,i])
m<-lm(y~.,data=dat)
l<-suppressMessages(round(confint(m)[-c(1:m1),1],2)) l<-suppressMessages(round(confint(m)[-c(1:m1),1],2))
u<-suppressMessages(round(confint(m)[-c(1:m1),2],2)) u<-suppressMessages(round(confint(m)[-c(1:m1),2],2))
co<-round(coef(m)[-c(1:m1)],2) or<-round(coef(m)[-c(1:m1)],2)
or_ci<-paste0(or," (",l," to ",u,")")
co_ci<-paste0(co," (",l," to ",u,")")
pv<-round(tidy(m)$p.value[-c(1:m1)],3) pv<-round(tidy(m)$p.value[-c(1:m1)],3)
pv<-ifelse(pv<0.001,"<0.001",pv) x1<-x[,i]
t <- ifelse(pv<=0.1|pv=="<0.001","include","drop") if (is.factor(x1)){
pred<-paste(names(x)[i],levels(x1)[-1],sep = "_")}
pv <- ifelse(pv<=0.05|pv=="<0.001",paste0("*",pv),
ifelse(pv>0.05&pv<=0.1,paste0(".",pv),pv))
v<-x[,i]
if (is.factor(v)){
pred<-paste(names(x)[i],levels(v)[-1],sep = "_")
}
else {pred<-names(x)[i]} else {pred<-names(x)[i]}
df<-rbind(df,cbind(pred,co_ci,pv,t)) df<-rbind(df,cbind(pred,or_ci,pv))}}
}}
if (ci==FALSE){ if (ci==FALSE){
df<-data.frame(matrix(ncol = 4)) df<-data.frame(matrix(ncol = 3))
names(df)<-c("pred","b","pv","t") names(df)<-c("pred","b","pv")
for(i in 1:ncol(x)){ for(i in 1:ncol(x)){
m<-lm(y~v1+x[,i]) dat<-cbind(dt,x[,i])
m<-lm(y~.,data=dat)
b<-round(coef(m)[-c(1:m1)],3) b<-round(coef(m)[-c(1:m1)],3)
pv<-round(tidy(m)$p.value[-c(1:m1)],3) pv<-round(tidy(m)$p.value[-c(1:m1)],3)
pv<-ifelse(pv<0.001,"<0.001",pv)
t <- ifelse(pv<=0.1|pv=="<0.001","include","drop") x1<-x[,i]
pv <- ifelse(pv<=0.05|pv=="<0.001",paste0("*",pv), if (is.factor(x1)){
ifelse(pv>0.05&pv<=0.1,paste0(".",pv),pv)) pred<-paste(names(x)[i],levels(x1)[-1],sep = "_")
v<-x[,i]
if (is.factor(v)){
pred<-paste(names(x)[i],levels(v)[-1],sep = "_")
} }
else {pred<-names(x)[i]} else {pred<-names(x)[i]}
df<-rbind(df,cbind(pred,b,pv,t)) df<-rbind(df,cbind(pred,b,pv))
}} }}
result<-df
return(df) pa<-as.numeric(df[,3])
pa<-ifelse(pa<0.001,"<0.001",pa)
t <- ifelse(pa<=0.1|pa=="<0.001","include","drop")
pa <- ifelse(pa<=0.05|pa=="<0.001",paste0("*",pa),
ifelse(pa>0.05&pa<=0.1,paste0(".",pa),pa))
r<-data.frame(df[,1:2],pa,t)[-1,]
return(r)
} }

View File

@ -4,15 +4,21 @@
\alias{rep_lm} \alias{rep_lm}
\title{A repeated linear regression function} \title{A repeated linear regression function}
\usage{ \usage{
rep_lm(y, v1, string, ci = FALSE, data, v2 = NULL, v3 = NULL) rep_lm(meas, vars, string, ci = FALSE, data)
} }
\arguments{ \arguments{
\item{y}{Effect meassure.} \item{meas}{Effect meassure. Input as c() of columnnames, use dput().}
\item{v1}{Main variable in model} \item{vars}{variables in model. Input as c() of columnnames, use dput().}
\item{string}{variables to test. Input as c() of columnnames, use dput().}
\item{ci}{flag to get results as OR with 95% confidence interval.}
\item{data}{data frame to pull variables from.}
} }
\description{ \description{
For bivariate analyses. For bivariate analyses, to determine which variables to include in adjusted model.
} }
\examples{ \examples{
rep_lm() rep_lm()