mirror of
https://github.com/agdamsbo/daDoctoR.git
synced 2024-10-30 02:31:52 +01:00
175 lines
5.2 KiB
R
175 lines
5.2 KiB
R
|
#' Print ordinal logistic regression results according to STROBE
|
||
|
#'
|
||
|
#' Printable table of ordinal logistic regression with bivariate and multivariate analyses.
|
||
|
#' Table according to STROBE. Uses polr() funtion of the MASS-package.
|
||
|
#' Formula analysed is the most simple m~v1+v2+vn. The is no significance test. Results are point estimates with 95 percent CI.
|
||
|
#' @param meas outcome meassure variable name or response in data-data.frame as a string. Should be factor, preferably ordered.
|
||
|
#' @param vars variables to compare against. As vector of columnnames.
|
||
|
#' @param data dataframe of data.
|
||
|
#' @param dec decimals for results, standard is set to 2. Mean and sd is dec-1.
|
||
|
#' @param n.by.adj flag to indicate wether to count number of patients in adjusted model or overall for outcome meassure not NA.
|
||
|
#' @keywords olr
|
||
|
#' @export
|
||
|
|
||
|
strobe_olr<-function(meas,vars,data,dec=2,n.by.adj=FALSE){
|
||
|
## For calculation of p-value from t-value see rep_olr()
|
||
|
|
||
|
require(MASS)
|
||
|
require(dplyr)
|
||
|
|
||
|
d<-data
|
||
|
m<-d[,c(meas)]
|
||
|
|
||
|
ads<-d[,c(vars)]
|
||
|
|
||
|
if(!is.factor(m)){stop("'meas' should be a factor, preferably ordered.")}
|
||
|
|
||
|
if(is.factor(m)){
|
||
|
|
||
|
## Crude ORs
|
||
|
|
||
|
dfcr<-data.frame(matrix(NA,ncol = 2))
|
||
|
names(dfcr)<-c("pred","or_ci")
|
||
|
n.mn<-c()
|
||
|
nref<-c()
|
||
|
|
||
|
for(i in 1:ncol(ads)){
|
||
|
dat<-data.frame(m=m,ads[,i])
|
||
|
names(dat)<-c("m",names(ads)[i])
|
||
|
mn<-polr(m ~ ., data = dat, Hess=TRUE)
|
||
|
n.mn<-c(n.mn,nrow(mn$model))
|
||
|
|
||
|
suppressMessages(ci<-matrix(exp(confint(mn)),ncol=2))
|
||
|
l<-round(ci[,1],dec)
|
||
|
u<-round(ci[,2],dec)
|
||
|
or<-round(exp(coef(mn)),dec)
|
||
|
or_ci<-paste0(or," (",l," to ",u,")")
|
||
|
|
||
|
x1<-ads[,i]
|
||
|
|
||
|
if (is.factor(x1)){
|
||
|
pred<-paste0(names(ads)[i],levels(x1)[-1])
|
||
|
}
|
||
|
|
||
|
else {
|
||
|
pred<-names(ads)[i]
|
||
|
}
|
||
|
|
||
|
dfcr<-rbind(dfcr,cbind(pred,or_ci))
|
||
|
}
|
||
|
|
||
|
|
||
|
## Mutually adjusted ORs
|
||
|
|
||
|
dat<-data.frame(m=m,ads)
|
||
|
ma <-polr(m ~ ., data = dat, Hess=TRUE)
|
||
|
miss<-length(ma$na.action)
|
||
|
|
||
|
aco<-round(exp(coef(ma)),dec)
|
||
|
suppressMessages(aci<-round(exp(confint(ma)),dec))
|
||
|
alo<-aci[,1]
|
||
|
aup<-aci[,2]
|
||
|
aor_ci<-paste0(aco," (",alo," to ",aup,")")
|
||
|
|
||
|
nq<-c()
|
||
|
|
||
|
if (n.by.adj==TRUE){
|
||
|
dat2<-ma$model[,-1]
|
||
|
for (i in 1:ncol(dat2)){
|
||
|
if (is.factor(dat2[,i])){
|
||
|
vec<-dat2[,i]
|
||
|
ns<-names(dat2)[i]
|
||
|
for (r in 1:length(levels(vec))){
|
||
|
vr<-levels(vec)[r]
|
||
|
n<-as.numeric(length(vec[vec==vr&!is.na(vec)]))
|
||
|
nall<-as.numeric(length(dat2[,c(ns)]))
|
||
|
n.meas<-nall
|
||
|
nl<-paste0(ns,levels(vec)[r])
|
||
|
pro<-round(n/nall*100,0)
|
||
|
rt<-paste0(n," (",pro,"%)")
|
||
|
nq<-rbind(nq,cbind(nl,rt))
|
||
|
}}
|
||
|
if (!is.factor(dat2[,i])){
|
||
|
num<-dat2[,i]
|
||
|
nl<-names(dat2)[i]
|
||
|
n<-as.numeric(length(num[!is.na(num)]))
|
||
|
nall<-as.numeric(nrow(dat2))
|
||
|
n.meas<-nall
|
||
|
pro<-round(n/nall*100,0)
|
||
|
rt<-paste0(n," (",pro,"%)")
|
||
|
nq<-rbind(nq,cbind(nl,rt))
|
||
|
}}}
|
||
|
|
||
|
else {
|
||
|
dat2<-dat[!is.na(dat[,1]),][,-1]
|
||
|
n.meas<-nrow(dat2)
|
||
|
for (i in 1:ncol(dat2)){
|
||
|
if (is.factor(dat2[,i])){
|
||
|
vec<-dat2[,i]
|
||
|
ns<-names(dat2)[i]
|
||
|
for (r in 1:length(levels(vec))){
|
||
|
vr<-levels(vec)[r]
|
||
|
n<-as.numeric(length(vec[vec==vr&!is.na(vec)]))
|
||
|
nall<-as.numeric(n.mn[i])
|
||
|
nl<-paste0(ns,levels(vec)[r])
|
||
|
pro<-round(n/nall*100,0)
|
||
|
rt<-paste0(n," (",pro,"%)")
|
||
|
nq<-rbind(nq,cbind(nl,rt))
|
||
|
}}
|
||
|
if (!is.factor(dat2[,i])){
|
||
|
num<-dat2[,i]
|
||
|
nl<-names(dat2)[i]
|
||
|
n<-as.numeric(length(num[!is.na(num)]))
|
||
|
nall<-as.numeric(n.meas)
|
||
|
pro<-round(n/nall*100,0)
|
||
|
rt<-paste0(n," (",pro,"%)")
|
||
|
nq<-rbind(nq,cbind(nl,rt))
|
||
|
}}
|
||
|
}
|
||
|
|
||
|
rnames<-c()
|
||
|
for (i in 1:ncol(dat2)){
|
||
|
if (is.factor(dat2[,i])){
|
||
|
rnames<-c(rnames,names(dat2)[i],paste0(names(dat2)[i],levels(dat2[,i])))
|
||
|
}
|
||
|
if (!is.factor(dat2[,i])){
|
||
|
rnames<-c(rnames,paste0(names(dat2)[i],".all"),names(dat2)[i])
|
||
|
}
|
||
|
}
|
||
|
rest<-data.frame(names=names(aco),aor_ci,stringsAsFactors = F)
|
||
|
|
||
|
numb<-data.frame(names=nq[,c("nl")],N=nq[,c("rt")],stringsAsFactors = F)
|
||
|
namt<-data.frame(names=rnames,stringsAsFactors = F)
|
||
|
|
||
|
coll<-left_join(left_join(namt,numb,by="names"),rest,by="names")
|
||
|
|
||
|
header<-data.frame(matrix(paste0("Chance of higher ",meas),ncol = ncol(coll)),stringsAsFactors = F)
|
||
|
names(header)<-names(coll)
|
||
|
|
||
|
df<-data.frame(rbind(header,coll),stringsAsFactors = F)
|
||
|
|
||
|
names(dfcr)[1]<-c("names")
|
||
|
|
||
|
suppressWarnings(re<-left_join(df,dfcr,by="names"))
|
||
|
|
||
|
rona<-c()
|
||
|
for (i in 1:length(ads)){
|
||
|
if (is.factor(ads[,i])){
|
||
|
rona<-c(rona,names(ads[i]),levels(ads[,i]))}
|
||
|
if (!is.factor(ads[,i])){
|
||
|
rona<-c(rona,names(ads[i]),"Per unit increase")
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ref<-data.frame(c(NA,rona),re[,2],re[,4],re[,3])
|
||
|
|
||
|
names(ref)<-c("Variable",paste0("N=",n.meas),"Bivariate OLR (95 % CI)","Mutually adjusted OLR (95 % CI)")
|
||
|
|
||
|
ls<-list(tbl=ref,miss,n.meas,nrow(d))
|
||
|
names(ls)<-c("Printable table","Deleted due to missingness in adjusted analysis","Number of outcome observations","Length of dataframe")
|
||
|
}
|
||
|
|
||
|
|
||
|
return(ls)
|
||
|
}
|