daDoctoR/R/print_log.R

146 lines
4.2 KiB
R
Raw Normal View History

2021-06-11 13:43:56 +02:00
#' Print regression results in table
#'
2021-06-11 13:43:56 +02:00
#' New function ready for revision
#'
#' Printable table of logistic regression analysis. Leaves out other variables from results.
#' @param meas outcome meassure variable name in data-data.frame as a string. Can be numeric or factor. Result is calculated accordingly.
#' @param var exposure variable to compare against (active vs placebo). As string.
#' @param adj variables to adjust for, as string.
#' @param data dataframe of data.
#' @param dec decimals for results, standard is set to 2. Mean and sd is dec-1.
#' @keywords logistic
#' @export
#' @examples
#' ##Example with with sample data
#' sz=100
#' dta<-data.frame(out=factor(sample(c("yes","no"),sz,replace=TRUE)),variable=factor(sample(c("down","up"),sz,replace=TRUE)),sex=factor(sample(c("male","female"),sz,replace=TRUE,prob=c(0.6,0.4))),age=as.numeric(sample(18:80,sz,replace=TRUE)))
#' print_log(meas="out",var="variable",adj=c("sex","age"),data=dta,dec=2)
print_log<-function(meas,var,adj,data,dec=2){
## Ønskeliste:
##
## - Ryd op i kode, der der er overflødig %-regning, alternativt, så fiks at NA'er ikke skal regnes med.
##
require(dplyr)
d<-data
m<-d[,c(meas)]
v<-d[,c(var)]
ads<-d[,c(adj)]
dat<-data.frame(m,v)
df<-data.frame(matrix(ncol=4))
mn <- glm(m ~ .,family = binomial(), data = dat)
dat<-data.frame(dat,ads)
ma <- glm(m ~ .,family = binomial(), data = dat)
ctable <- coef(summary(mn))
pa <- ctable[,4]
pa<-ifelse(pa<0.001,"<0.001",round(pa,3))
pa <- ifelse(pa<=0.05|pa=="<0.001",paste0("*",pa),
ifelse(pa>0.05&pa<=0.1,paste0(".",pa),pa))
pv<-c("REF",pa[2:length(coef(mn))])
co<-round(exp(coef(mn)),dec)[-1]
ci<-round(exp(confint(mn)),dec)[-1,]
lo<-ci[1]
up<-ci[2]
or_ci<-c("REF",paste0(co," (",lo," to ",up,")"))
nr<-c()
for (r in 1:length(levels(dat[,2]))){
vr<-levels(dat[,2])[r]
dr<-dat[dat[,2]==vr,]
n<-as.numeric(nrow(dr))
## Af en eller anden grund bliver der talt for mange med.
# nall<-as.numeric(nrow(dat[!is.na(dat[,2]),]))
nl<-levels(m)[r]
# pro<-round(n/nall*100,0)
# rt<-paste0(n," (",pro,"%)")
nr<-rbind(nr,cbind(nl,n))
}
mms<-data.frame(cbind(nr,or_ci,pv))
header<-data.frame(matrix(var,ncol = ncol(mms)))
names(header)<-names(mms)
ls<-list(unadjusted=data.frame(rbind(header,mms)))
actable <- coef(summary(ma))
pa <- actable[,4]
pa<-ifelse(pa<0.001,"<0.001",round(pa,3))
pa <- ifelse(pa<=0.05|pa=="<0.001",paste0("*",pa),
ifelse(pa>0.05&pa<=0.1,paste0(".",pa),pa))
apv<-pa[1:length(coef(ma))]
aco<-round(exp(coef(ma)),dec)
aci<-round(exp(confint(ma)),dec)
alo<-aci[,1]
aup<-aci[,2]
aor_ci<-paste0(aco," (",alo," to ",aup,")")
dat2<-dat[,-1]
# names(dat2)<-c(var,names(ads))
nq<-c()
for (i in 1:ncol(dat2)){
if (is.factor(dat2[,i])){
vec<-dat2[,i]
ns<-names(dat2)[i]
for (r in 1:length(levels(vec))){
vr<-levels(vec)[r]
dr<-vec[vec==vr]
n<-as.numeric(length(dr))
# nall<-as.numeric(nrow(dat[!is.na(dat2[,c(ns)]),]))
nl<-paste0(ns,levels(vec)[r])
# pro<-round(n/nall*100,0)
# rt<-paste0(n," (",pro,"%)")
nq<-rbind(nq,cbind(nl,n))
}
}
if (!is.factor(dat2[,i])){
num<-dat2[,i]
ns<-names(dat2)[i]
nall<-as.numeric(nrow(dat[!is.na(dat2[,c(ns)]),]))
nq<-rbind(nq,cbind(ns,nall))
}
}
rnames<-c()
for (i in 1:ncol(dat2)){
if (is.factor(dat2[,i])){
rnames<-c(rnames,names(dat2)[i],paste0(names(dat2)[i],levels(dat2[,i])))
}
if (!is.factor(dat2[,i])){
rnames<-c(rnames,paste0(names(dat2)[i],".all"),names(dat2)[i])
}
}
res<-cbind(aor_ci,apv)
rest<-data.frame(names=row.names(res),res,stringsAsFactors = F)
numb<-data.frame(names=nq[,c("nl")],N=nq[,c("n")],stringsAsFactors = F)
namt<-data.frame(names=rnames,stringsAsFactors = F)
coll<-left_join(left_join(namt,numb,by="names"),rest,by="names")
header<-data.frame(matrix("Adjusted",ncol = ncol(coll)))
names(header)<-names(coll)
ls$adjusted<-data.frame(rbind(header,coll))
names(ls$unadjusted)<-c("Variable",paste0("N (n=",nrow(mn$model),")"),"OR (95 % CI)","p value")
names(ls$adjusted)<-c("Variable",paste0("N (n=",nrow(ma$model),")"),"OR (95 % CI)","p value")
return(ls)
}