2018-10-09 14:03:56 +02:00
#' A repeated ordinal logistic regression function
#'
2018-10-10 13:34:04 +02:00
#' For bivariate analyses. The confint() function is rather slow, causing the whole function to hang when including many predictors and calculating the ORs with CI.
2018-10-09 14:03:56 +02:00
#' @param meas Effect meassure. Input as c() of columnnames, use dput().
#' @param vars variables in model. Input as c() of columnnames, use dput().
2018-10-23 15:29:48 +02:00
#' @param string variables to test. Input as c() of columnnames, use dput().
2018-10-09 14:03:56 +02:00
#' @param ci flag to get results as OR with 95% confidence interval.
#' @param dta data frame to pull variables from.
2018-10-10 13:34:04 +02:00
#' @keywords olr
2018-10-09 14:03:56 +02:00
#' @export
#' @examples
2018-10-10 13:34:04 +02:00
#' rep_olr()
2018-10-09 14:03:56 +02:00
rep_olr <- function ( meas , vars , string , ci = FALSE , data ) {
require ( broom )
require ( MASS )
d <- data
x <- data.frame ( d [ , c ( string ) ] )
v <- data.frame ( d [ , c ( vars ) ] )
names ( v ) <- c ( vars )
y <- d [ , c ( meas ) ]
dt <- cbind ( y , v )
m1 <- length ( coef ( polr ( y ~ .,data = dt , Hess = TRUE ) ) )
if ( ! is.factor ( y ) ) { stop ( " y should be a factor!" ) }
if ( ci == TRUE ) {
df <- data.frame ( matrix ( ncol = 3 ) )
names ( df ) <- c ( " pred" , " or_ci" , " pv" )
for ( i in 1 : ncol ( x ) ) {
dat <- cbind ( dt , x [ , i ] )
m <- polr ( y ~ .,data = dat , Hess = TRUE )
ctable <- coef ( summary ( m ) )
l <- suppressMessages ( round ( exp ( confint ( m ) ) [ - c ( 1 : m1 ) , 1 ] , 2 ) )
u <- suppressMessages ( round ( exp ( confint ( m ) ) [ - c ( 1 : m1 ) , 2 ] , 2 ) )
or <- round ( exp ( coef ( m ) ) [ - c ( 1 : m1 ) ] , 2 )
or_ci <- paste0 ( or , " (" , l , " to " , u , " )" )
p <- ( pnorm ( abs ( ctable [ , " t value" ] ) , lower.tail = FALSE ) * 2 ) [1 : length ( coef ( m ) ) ]
pv <- round ( p [ - c ( 1 : m1 ) ] , 3 )
x1 <- x [ , i ]
if ( is.factor ( x1 ) ) {
pred <- paste ( names ( x ) [i ] , levels ( x1 ) [ -1 ] , sep = " _" ) }
else { pred <- names ( x ) [i ] }
df <- rbind ( df , cbind ( pred , or_ci , pv ) )
} }
if ( ci == FALSE ) {
df <- data.frame ( matrix ( ncol = 3 ) )
names ( df ) <- c ( " pred" , " b" , " pv" )
for ( i in 1 : ncol ( x ) ) {
dat <- cbind ( dt , x [ , i ] )
m <- polr ( y ~ .,data = dat , Hess = TRUE )
2018-10-09 14:30:27 +02:00
ctable <- coef ( summary ( m ) )
2018-10-09 14:03:56 +02:00
b <- round ( coef ( m ) [ - c ( 1 : m1 ) ] , 2 )
p <- ( pnorm ( abs ( ctable [ , " t value" ] ) , lower.tail = FALSE ) * 2 ) [1 : length ( coef ( m ) ) ]
pv <- round ( p [ - c ( 1 : m1 ) ] , 3 )
x1 <- x [ , i ]
if ( is.factor ( x1 ) ) {
pred <- paste ( names ( x ) [i ] , levels ( x1 ) [ -1 ] , sep = " _" )
}
else { pred <- names ( x ) [i ] }
df <- rbind ( df , cbind ( pred , b , pv ) )
} }
pa <- as.numeric ( df [ , c ( " pv" ) ] )
t <- ifelse ( pa <= 0.1 , " include" , " drop" )
pa <- ifelse ( pa < 0.001 , " <0.001" , pa )
pa <- ifelse ( pa <= 0.05 | pa == " <0.001" , paste0 ( " *" , pa ) ,
ifelse ( pa > 0.05 & pa <= 0.1 , paste0 ( " ." , pa ) , pa ) )
r <- data.frame ( df [ , 1 : 2 ] , pa , t ) [ -1 , ]
return ( r )
}