2018-10-02 21:07:43 +02:00
|
|
|
% Generated by roxygen2: do not edit by hand
|
|
|
|
% Please edit documentation in R/rep_lm.R
|
|
|
|
\name{rep_lm}
|
|
|
|
\alias{rep_lm}
|
|
|
|
\title{A repeated linear regression function}
|
|
|
|
\usage{
|
2018-10-04 10:49:05 +02:00
|
|
|
rep_lm(meas, vars, string, ci = FALSE, data)
|
2018-10-02 21:07:43 +02:00
|
|
|
}
|
|
|
|
\arguments{
|
2018-10-04 10:49:05 +02:00
|
|
|
\item{meas}{Effect meassure. Input as c() of columnnames, use dput().}
|
2018-10-02 21:07:43 +02:00
|
|
|
|
2018-10-04 10:49:05 +02:00
|
|
|
\item{vars}{variables in model. Input as c() of columnnames, use dput().}
|
|
|
|
|
|
|
|
\item{string}{variables to test. Input as c() of columnnames, use dput().}
|
|
|
|
|
|
|
|
\item{ci}{flag to get results as OR with 95% confidence interval.}
|
|
|
|
|
|
|
|
\item{data}{data frame to pull variables from.}
|
2018-10-02 21:07:43 +02:00
|
|
|
}
|
|
|
|
\description{
|
2018-10-04 10:49:05 +02:00
|
|
|
For bivariate analyses, to determine which variables to include in adjusted model.
|
2018-10-02 21:07:43 +02:00
|
|
|
}
|
|
|
|
\examples{
|
2018-10-04 21:06:22 +02:00
|
|
|
l<-50
|
|
|
|
y<-factor(rep(c("a","b"),l))
|
|
|
|
x<-rnorm(length(y), mean=50, sd=10)
|
|
|
|
v1<-factor(rep(c("r","s"),length(y)/2))
|
|
|
|
v2<-sample(1:100, length(y), replace=FALSE)
|
|
|
|
v3<-as.numeric(1:length(y))
|
|
|
|
d<-data.frame(y,x,v1,v2,v3)
|
|
|
|
preds<-c("v1","v2","v3")
|
|
|
|
rep_lm(meas="x",vars="y",string=preds,ci=F,data=d)
|
2018-10-02 21:07:43 +02:00
|
|
|
}
|
|
|
|
\keyword{linear}
|
|
|
|
\keyword{regression}
|