daDoctoR/R/print_pred_stratum.R

39 lines
1.7 KiB
R
Raw Normal View History

#' Extension to the print_pred function, for by stratum analysis.
#'
#' Outputs list of results from 'print_pred' for the whole data set and for each stratum defined by 'strat'.
#' Suitable to assist in determining whether a variable is a confounder or effect modifier.
#' Ref: https://open.oregonstate.education/epidemiology/chapter/effect-modification/
#' @param meas binary outcome measure variable, column name in data.frame as a string. Can be numeric or factor. Result is calculated accordingly.
#' @param adj variables to adjust for, as string.
#' @param strat stratum to stratify, variable name as string
#' @param data dataframe of data.
#' @param include.stratum flag to set if stratum variable should be included in first analysis of non-stratified data.
#' @keywords stratum
#' @export
#' @examples
#' data('mtcars')
#' mtcars$vs<-factor(mtcars$vs)
#' mtcars$am<-factor(mtcars$am)
#' print_pred_stratum(meas="mpg",strat="vs",adj=c("disp","wt","am"),data=mtcars,include.stratum=TRUE)
print_pred_stratum<-function(meas,adj,strat,data,dec=2,n.by.adj=FALSE,p.val=FALSE,include.stratum = T){
require(daDoctoR)
require(dplyr)
if (include.stratum==TRUE){
ls<-list(all=print_pred(meas = meas,adj=c(strat,adj),data=data,dec=dec,n.by.adj=n.by.adj,p.val=p.val))
}
if (include.stratum==FALSE) {
ls<-list(all=print_pred(meas = meas,adj=adj,data=data,dec=dec,n.by.adj=n.by.adj,p.val=p.val))
}
strt<-data[, c(strat)]
for (i in 1:length(levels(factor(strt)))){
d_str<-data[data[[strat]]==levels(data[[strat]])[i], c(meas,adj)]
2021-10-07 09:53:21 +02:00
ls_str<-list(print_pred(meas = meas,adj=adj,data=d_str,dec=dec,n.by.adj=n.by.adj,p.val=p.val))
names(ls_str)<-levels(factor(strt))[i]
ls<-append(ls,ls_str)
}
return(ls)
}