daDoctoR/R/print_diff_byvar.R

145 lines
5.1 KiB
R
Raw Normal View History

#' REWRITE UNDERWAY
#'
#' Print regression results according to STROBE
#'
#' Printable table of three dimensional regression analysis of group vs var for meas. By var. Includes p-values.
#' @param meas outcome meassure variable name in data-data.frame as a string. Can be numeric or factor. Result is calculated accordingly.
#' @param var binary exposure variable to compare against (active vs placebo). As string.
#' @param group groups to compare, as string.
#' @param adj variables to adjust for, as string.
#' @param data dataframe of data.
#' @param dec decimals for results, standard is set to 2. Mean and sd is dec-1.
#' @keywords strobe
#' @export
#' @examples
#' data('mtcars')
#' mtcars$vs<-factor(mtcars$vs)
#' mtcars$am<-factor(mtcars$am)
#' strobe_diff_byvar(meas="mpg",var="vs",group = "am",adj=c("disp","wt","hp"),data=mtcars)
print_diff_byvar<-function(meas,var,group,adj,data,dec=2){
## meas: sdmt
## var: rtreat
## group: genotype
## for dichotome exposure variable (var)
d <- data
m <- d[, c(meas)]
v <- d[, c(var)]
g <- d[, c(group)]
ads <- d[, c(adj)]
dat <- data.frame(m, v, g, ads)
df <- data.frame(grp = c(NA, as.character(levels(g))))
if (!is.factor(m)) {
for (i in 1:length(levels(v))) {
grp <- levels(dat$v)[i]
di <- dat[dat$v == grp, ][, -2]
mod <- lm(m ~ g, data = di)
p <- coef(summary(mod))[2:length(levels(g)),4]
p<-ifelse(p<0.001,"<0.001",round(p,3))
p <- ifelse(p<=0.05|p=="<0.001",paste0("*",p),
ifelse(p>0.05&p<=0.1,paste0(".",p),p))
pv<-c("-",p)
co <- c("-", round(coef(mod)[-1], dec))
ci<-round(confint(mod),dec)[2:length(levels(g)),]
lo <- c("-", ci[,1])
up <- c("-", ci[,2])
ci <- paste0(co, " (", lo, " to ", up, ")")
amod <- lm(m ~ ., data = di)
pa <- coef(summary(amod))[2:length(levels(g)),4]
pa<-ifelse(pa<0.001,"<0.001",round(pa,3))
pa <- ifelse(pa<=0.05|pa=="<0.001",paste0("*",pa),
ifelse(pa>0.05&pa<=0.1,paste0(".",pa),pa))
apv<-c("-",pa)
aco <- c("-", round(coef(amod)[2:length(levels(g))],
dec))
aci<-round(confint(amod),dec)[2:length(levels(g)),]
alo <- c("-", aci[,1])
aup <- c("-", aci[,2])
aci <- paste0(aco, " (", alo, " to ", aup, ")")
nr <- c()
for (r in 1:length(levels(g))) {
vr <- levels(di$g)[r]
dr <- di[di$g == vr, ]
n <- as.numeric(nrow(dr[!is.na(dr$m), ]))
mean <- round(mean(dr$m, na.rm = TRUE), dec -
1)
sd <- round(sd(dr$m, na.rm = TRUE), dec - 1)
ms <- paste0(mean, " (", sd, ")")
nr <- c(nr, n, ms)
}
irl <- rbind(matrix(grp, ncol = 6), cbind(matrix(nr,
ncol = 2, byrow = TRUE), cbind(ci,pv, aci,apv)))
colnames(irl) <- c("N",
"Mean (SD)",
"Difference",
"p-value",
"Adjusted Difference",
"Adjusted p-value")
df <- cbind(df, irl)
}
}
if (is.factor(m)) {
for (i in 1:length(levels(v))) {
grp <- levels(dat$v)[i]
di <- dat[dat$v == grp, ][, -2]
mod <- glm(m ~ g, family = binomial(), data = di)
p <- coef(summary(mod))[2:length(levels(g)),4]
p<-ifelse(p<0.001,"<0.001",round(p,3))
p <- ifelse(p<=0.05|p=="<0.001",paste0("*",p),
ifelse(p>0.05&p<=0.1,paste0(".",p),p))
pv<-c("-",p)
co <- c("-", round(exp(coef(mod)[-1]), dec))
ci <- suppressMessages(round(exp(confint(mod)),dec))[2:length(levels(g)),]
lo <- c("-", ci[,1])
up <- c("-", ci[,2])
ci <- paste0(co, " (", lo, " to ", up, ")")
amod <- glm(m ~ ., family = binomial(), data = di)
pa <- coef(summary(amod))[2:length(levels(g)),4]
pa<-ifelse(pa<0.001,"<0.001",round(pa,3))
pa <- ifelse(pa<=0.05|pa=="<0.001",paste0("*",pa),
ifelse(pa>0.05&pa<=0.1,paste0(".",pa),pa))
apv<-c("-",pa)
aco <- c("-", suppressMessages(round(exp(coef(amod)[2:length(levels(g))]),
dec)))
aci <- suppressMessages(round(exp(confint(mod)),dec)[2:length(levels(g)),])
alo <- c("-", aci[,1])
aup <- c("-", aci[,2])
aci <- paste0(aco, " (", alo, " to ", aup, ")")
nr <- c()
for (r in 1:length(levels(g))) {
vr <- levels(di$g)[r]
dr <- di[di$g == vr, ]
n <- as.numeric(nrow(dr[!is.na(dr$m), ]))
nl <- levels(m)[2]
out <- nrow(dr[dr$m == nl & !is.na(dr$m), ])
pro <- round(out/n * 100, 0)
rt <- paste0(out, " (", pro, "%)")
nr <- c(nr, n, rt)
}
irl <- rbind(matrix(grp, ncol = 4), cbind(matrix(nr,
ncol = 2, byrow = TRUE), cbind(ci,pv, aci,apv)))
colnames(irl) <- c("N",
paste0("N.", nl),
"OR",
"p-value",
"Adjusted OR",
"Adjusted p-value")
df <- cbind(df, irl)
}
}
return(df)
}