daDoctoR/man/strobe_olr.Rd

38 lines
1.5 KiB
Plaintext
Raw Normal View History

2018-10-10 09:02:22 +02:00
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/print_olr.R, R/strobe_olr.R
2018-10-10 09:02:22 +02:00
\name{strobe_olr}
\alias{strobe_olr}
\title{OBSOLETE - use 'print_olr'}
2018-10-10 09:02:22 +02:00
\usage{
strobe_olr(meas, vars, data, dec = 2, n.by.adj = FALSE)
2019-12-03 10:03:38 +01:00
strobe_olr(meas, vars, data, dec = 2, n.by.adj = FALSE)
2018-10-10 09:02:22 +02:00
}
\arguments{
2019-12-03 10:03:38 +01:00
\item{meas}{outcome meassure variable name or response in data-data.frame as a string. Should be factor, preferably ordered.}
2018-10-10 09:02:22 +02:00
2018-10-29 13:16:00 +01:00
\item{vars}{variables to compare against. As vector of columnnames.}
2018-10-10 09:02:22 +02:00
\item{data}{dataframe of data.}
\item{dec}{decimals for results, standard is set to 2. Mean and sd is dec-1.}
2019-12-03 10:03:38 +01:00
\item{n.by.adj}{flag to indicate wether to count number of patients in adjusted model or overall for outcome meassure not NA.}
2018-10-10 09:02:22 +02:00
}
\description{
Print ordinal logistic regression results according to STROBE
}
\details{
2019-12-03 10:03:38 +01:00
Printable table of ordinal logistic regression with bivariate and multivariate analyses.
Table according to STROBE. Uses polr() funtion of the MASS-package.
Formula analysed is the most simple m~v1+v2+vn. The is no significance test. Results are point estimates with 95 percent CI.
Print ordinal logistic regression results according to STROBE
}
\details{
2019-12-03 10:03:38 +01:00
Printable table of ordinal logistic regression with bivariate and multivariate analyses.
Table according to STROBE. Uses polr() funtion of the MASS-package.
Formula analysed is the most simple m~v1+v2+vn. The is no significance test. Results are point estimates with 95 percent CI.
2018-10-10 09:02:22 +02:00
}
2018-10-10 11:52:02 +02:00
\keyword{olr}