with presentation
This commit is contained in:
parent
54831103d4
commit
6f708f97bf
114
Day 3.R
114
Day 3.R
@ -123,7 +123,7 @@ airports |>
|
||||
theme_bw(18)+
|
||||
scale_color_viridis_c(direction = -1)
|
||||
|
||||
library(lubridate)
|
||||
|
||||
flights |>
|
||||
group_by(tailnum) |>
|
||||
summarise(avg_del = mean(arr_delay,na.rm=TRUE)) |>
|
||||
@ -139,4 +139,114 @@ flights |>
|
||||
labs(y="Mean delay", x="Age")
|
||||
|
||||
|
||||
weather
|
||||
# Memory
|
||||
|
||||
x <- rnorm(2e4) # Try also with n = 1e5
|
||||
|
||||
## The old way:
|
||||
system.time({
|
||||
current_sum <- 0
|
||||
res <- c()
|
||||
for (x_i in x) {
|
||||
current_sum <- current_sum + x_i
|
||||
res <- c(res, current_sum)
|
||||
}
|
||||
})
|
||||
|
||||
## Be smart, do like this:
|
||||
|
||||
system.time({
|
||||
current_sum <- 0
|
||||
res2 <- double(length(x))
|
||||
for (i in seq_along(x)) {
|
||||
current_sum <- current_sum + x[i]
|
||||
res2[i] <- current_sum
|
||||
}
|
||||
})
|
||||
|
||||
# From R >= 3.4
|
||||
system.time({
|
||||
current_sum <- 0
|
||||
res4 <- c()
|
||||
for (i in seq_along(x)) {
|
||||
current_sum <- current_sum + x[i]
|
||||
res4[i] <- current_sum
|
||||
}
|
||||
})
|
||||
|
||||
n <- 1e3
|
||||
max <- 1:1000
|
||||
system.time({
|
||||
mat <- NULL
|
||||
for (m in max) {
|
||||
mat <- cbind(mat, runif(n, max = m))
|
||||
}
|
||||
})
|
||||
|
||||
## Vectorisation
|
||||
|
||||
### Slow
|
||||
monte_carlo <- function(N) {
|
||||
|
||||
hits <- 0
|
||||
for (i in seq_len(N)) {
|
||||
u1 <- runif(1)
|
||||
u2 <- runif(1)
|
||||
if (u1 ^ 2 > u2) {
|
||||
hits <- hits + 1
|
||||
}
|
||||
}
|
||||
|
||||
hits / N
|
||||
}
|
||||
|
||||
### Hurtig
|
||||
monte_carlo2 <- function(N) {
|
||||
mean(runif(N) ^ 2 > runif(N))
|
||||
}
|
||||
|
||||
### Test
|
||||
N=1e3
|
||||
microbenchmark::microbenchmark(
|
||||
monte_carlo(N),
|
||||
monte_carlo2(N)
|
||||
)
|
||||
|
||||
|
||||
# Algebra
|
||||
|
||||
## Optimisation exercise
|
||||
set.seed(1)
|
||||
N <- 1e4
|
||||
x <- 0
|
||||
count <- 0
|
||||
for (i in seq_len(N)){
|
||||
y <- rnorm(1)
|
||||
x <- x + y
|
||||
if (x < 0) count <- count + 1
|
||||
}
|
||||
count / N
|
||||
|
||||
mean(cumsum(rnorm(N)) < 0) # Equivalent
|
||||
|
||||
## Optimisation exercise
|
||||
mat <- as.matrix(mtcars)
|
||||
ind <- seq_len(nrow(mat))
|
||||
mat_big <- mat[rep(ind, 1000), ] ## 1000 times bigger dataset
|
||||
last_row <- mat_big[nrow(mat_big), ]
|
||||
|
||||
### Orig
|
||||
system.time({
|
||||
for (j in 1:ncol(mat_big)) {
|
||||
for (i in 1:nrow(mat_big)) {
|
||||
mat_big[i, j] <- 10 * mat_big[i, j] * last_row[j]
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
### Optimised
|
||||
system.time(sweep(mat_big, MARGIN = 2, STATS = 10 * last_row, FUN = '*'))
|
||||
|
||||
|
||||
|
||||
|
||||
|
35
presentation.Rmd
Normal file
35
presentation.Rmd
Normal file
@ -0,0 +1,35 @@
|
||||
---
|
||||
title: "Presentation"
|
||||
author: "AGDamsbo"
|
||||
date: "`r Sys.Date()`"
|
||||
output: ioslides_presentation
|
||||
---
|
||||
|
||||
```{r setup, include=FALSE}
|
||||
knitr::opts_chunk$set(echo = FALSE)
|
||||
```
|
||||
|
||||
## R Markdown
|
||||
|
||||
This is an R Markdown presentation. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see <http://rmarkdown.rstudio.com>.
|
||||
|
||||
When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document.
|
||||
|
||||
## Slide with Bullets
|
||||
|
||||
- Bullet 1
|
||||
- Bullet 2
|
||||
- Bullet 3
|
||||
|
||||
## Slide with R Output
|
||||
|
||||
```{r cars, echo = TRUE}
|
||||
summary(cars)
|
||||
```
|
||||
|
||||
## Slide with Plot
|
||||
|
||||
```{r pressure}
|
||||
plot(pressure)
|
||||
```
|
||||
|
3267
presentation.html
Normal file
3267
presentation.html
Normal file
File diff suppressed because one or more lines are too long
Loading…
x
Reference in New Issue
Block a user