REDCapCAST/R/ds2dd_detailed.R

377 lines
11 KiB
R

utils::globalVariables(c(
"stats::setNames",
"field_name",
"field_type",
"select_choices_or_calculations"
))
#' Try at determining which are true time only variables
#'
#' @description
#' This is just a try at guessing data type based on data class and column names
#' hoping for a tiny bit of naming consistency. R does not include a time-only
#' data format natively, so the "hms" class from `readr` is used. This
#' has to be converted to character class before REDCap upload.
#'
#' @param data data set
#' @param validate flag to output validation data. Will output list.
#' @param sel.pos Positive selection regex string
#' @param sel.neg Negative selection regex string
#'
#' @return character vector or list depending on `validate` flag.
#' @export
#'
#' @examples
#' data <- redcapcast_data
#' data |> guess_time_only_filter()
#' data |>
#' guess_time_only_filter(validate = TRUE) |>
#' lapply(head)
guess_time_only_filter <- function(data,
validate = FALSE,
sel.pos = "[Tt]i[d(me)]",
sel.neg = "[Dd]at[eo]") {
datetime_nms <- data |>
lapply(\(x) any(c("POSIXct", "hms") %in% class(x))) |>
(\(x) names(data)[do.call(c, x)])()
time_only_log <- datetime_nms |> (\(x) {
## Detects which are determined true Time only variables
## Inspection is necessary
grepl(pattern = sel.pos, x = x) &
!grepl(pattern = sel.neg, x = x)
})()
if (validate) {
list(
"is.POSIX" = data[datetime_nms],
"is.datetime" = data[datetime_nms[!time_only_log]],
"is.time_only" = data[datetime_nms[time_only_log]]
)
} else {
datetime_nms[time_only_log]
}
}
#' Correction based on time_only_filter function
#'
#'
#' @param data data set
#' @param ... arguments passed on to `guess_time_only_filter()`
#'
#' @return tibble
#' @importFrom readr parse_time
#'
#' @examples
#' data <- redcapcast_data
#' ## data |> time_only_correction()
time_only_correction <- function(data, ...) {
nms <- guess_time_only_filter(data, ...)
z <- nms |>
lapply(\(y) {
readr::parse_time(format(data[[y]], format = "%H:%M:%S"))
}) |>
suppressMessages(dplyr::bind_cols()) |>
stats::setNames(nm = nms)
data[nms] <- z
data
}
#' Change "hms" to "character" for REDCap upload.
#'
#' @param data data set
#'
#' @return data.frame or tibble
#'
#' @examples
#' data <- redcapcast_data
#' ## data |> time_only_correction() |> hms2character()
hms2character <- function(data) {
data |>
lapply(function(x) {
if ("hms" %in% class(x)) {
as.character(x)
} else {
x
}
}) |>
dplyr::bind_cols()
}
#' Extract data from stata file for data dictionary
#'
#' @details
#' This function is a natural development of the ds2dd() function. It assumes
#' that the first column is the ID-column. No checks.
#' Please, do always inspect the data dictionary before upload.
#'
#' Ensure, that the data set is formatted with as much information as possible.
#'
#' `field.type` can be supplied
#'
#' @param data data frame
#' @param date.format date format, character string. ymd/dmy/mdy. dafault is
#' dmy.
#' @param add.auto.id flag to add id column
#' @param form.name manually specify form name(s). Vector of length 1 or
#' ncol(data). Default is NULL and "data" is used.
#' @param field.type manually specify field type(s). Vector of length 1 or
#' ncol(data). Default is NULL and "text" is used for everything but factors,
#' which wil get "radio".
#' @param field.label manually specify field label(s). Vector of length 1 or
#' ncol(data). Default is NULL and colnames(data) is used or attribute
#' `field.label.attr` for haven_labelled data set (imported .dta file with
#' `haven::read_dta()`).
#' @param field.label.attr attribute name for named labels for haven_labelled
#' data set (imported .dta file with `haven::read_dta()`. Default is "label"
#' @param field.validation manually specify field validation(s). Vector of
#' length 1 or ncol(data). Default is NULL and `levels()` are used for factors
#' or attribute `factor.labels.attr` for haven_labelled data set (imported .dta
#' file with `haven::read_dta()`).
#' @param metadata redcap metadata headings. Default is
#' REDCapCAST:::metadata_names.
#' @param validate.time Flag to validate guessed time columns
#' @param time.var.sel.pos Positive selection regex string passed to
#' `gues_time_only_filter()` as sel.pos.
#' @param time.var.sel.neg Negative selection regex string passed to
#' `gues_time_only_filter()` as sel.neg.
#'
#' @return list of length 2
#' @export
#'
#' @examples
#' data <- redcapcast_data
#' data |> ds2dd_detailed(validate.time = TRUE)
#' data |> ds2dd_detailed()
#' iris |> ds2dd_detailed(add.auto.id = TRUE)
#' mtcars |> ds2dd_detailed(add.auto.id = TRUE)
ds2dd_detailed <- function(data,
add.auto.id = FALSE,
date.format = "dmy",
form.name = NULL,
field.type = NULL,
field.label = NULL,
field.label.attr = "label",
field.validation = NULL,
metadata = metadata_names,
validate.time = FALSE,
time.var.sel.pos = "[Tt]i[d(me)]",
time.var.sel.neg = "[Dd]at[eo]") {
## Handles the odd case of no id column present
if (add.auto.id) {
data <- dplyr::tibble(
default_trial_id = seq_len(nrow(data)),
data
)
message("A default id column has been added")
}
if (validate.time) {
return(data |> guess_time_only_filter(validate = TRUE))
}
if (lapply(data, haven::is.labelled) |> (\(x)do.call(c, x))() |> any()) {
message("Data seems to be imported with haven from a Stata (.dta) file and
will be treated as such.")
data.source <- "dta"
} else {
data.source <- ""
}
## data classes
### Only keeps the first class, as time fields (POSIXct/POSIXt) has two
### classes
if (data.source == "dta") {
data_classes <-
data |>
haven::as_factor() |>
time_only_correction(
sel.pos = time.var.sel.pos,
sel.neg = time.var.sel.neg
) |>
lapply(\(x)class(x)[1]) |>
(\(x)do.call(c, x))()
} else {
data_classes <-
data |>
time_only_correction(
sel.pos = time.var.sel.pos,
sel.neg = time.var.sel.neg
) |>
lapply(\(x)class(x)[1]) |>
(\(x)do.call(c, x))()
}
## ---------------------------------------
## Building the data dictionary
## ---------------------------------------
## skeleton
dd <- data.frame(matrix(ncol = length(metadata), nrow = ncol(data))) |>
stats::setNames(metadata) |>
dplyr::tibble()
dd$field_name <- gsub(" ", "_", tolower(colnames(data)))
## form_name
if (is.null(form.name)) {
dd$form_name <- "data"
} else {
if (length(form.name) == 1 || length(form.name) == nrow(dd)) {
dd$form_name <- form.name
} else {
stop("Length of supplied 'form.name' has to be one (1) or ncol(data).")
}
}
## field_label
if (is.null(field.label)) {
if (data.source == "dta") {
label <- data |>
lapply(function(x) {
if (haven::is.labelled(x)) {
attributes(x)[[field.label.attr]]
} else {
NA
}
}) |>
(\(x)do.call(c, x))()
} else {
label <- data |> colnames()
}
dd <-
dd |> dplyr::mutate(field_label = dplyr::if_else(is.na(label),
field_name, label
))
} else {
if (length(field.label) == 1 || length(field.label) == nrow(dd)) {
dd$field_label <- field.label
} else {
stop("Length of supplied 'field.label' has to be one (1) or ncol(data).")
}
}
## field_type
if (is.null(field.type)) {
dd$field_type <- "text"
dd <-
dd |> dplyr::mutate(field_type = dplyr::if_else(data_classes == "factor",
"radio", field_type
))
} else {
if (length(field.type) == 1 || length(field.type) == nrow(dd)) {
dd$field_type <- field.type
} else {
stop("Length of supplied 'field.type' has to be one (1) or ncol(data).")
}
}
## validation
if (is.null(field.validation)) {
dd <-
dd |> dplyr::mutate(
text_validation_type_or_show_slider_number = dplyr::case_when(
data_classes == "Date" ~ paste0("date_", date.format),
data_classes ==
"hms" ~ "time_hh_mm_ss",
## Self invented format after filtering
data_classes ==
"POSIXct" ~ paste0("datetime_", date.format),
data_classes ==
"numeric" ~ "number"
)
)
} else {
if (length(field.validation) == 1 || length(field.validation) == nrow(dd)) {
dd$text_validation_type_or_show_slider_number <- field.validation
} else {
stop("Length of supplied 'field.validation'
has to be one (1) or ncol(data).")
}
}
## choices
if (data.source == "dta") {
factor_levels <- data |>
lapply(function(x) {
if (haven::is.labelled(x)) {
att <- attributes(x)$labels
paste(paste(att, names(att), sep = ", "), collapse = " | ")
} else {
NA
}
}) |>
(\(x)do.call(c, x))()
} else {
factor_levels <- data |>
lapply(function(x) {
if (is.factor(x)) {
## Re-factors to avoid confusion with missing levels
## Assumes alle relevant levels are represented in the data
re_fac <- factor(x)
paste(
paste(unique(as.numeric(re_fac)),
levels(re_fac),
sep = ", "
),
collapse = " | "
)
} else {
NA
}
}) |>
(\(x)do.call(c, x))()
}
dd <-
dd |> dplyr::mutate(
select_choices_or_calculations = dplyr::if_else(
is.na(factor_levels),
select_choices_or_calculations,
factor_levels
)
)
list(
data = data |>
time_only_correction(
sel.pos = time.var.sel.pos,
sel.neg = time.var.sel.neg
) |>
hms2character() |>
(\(x)stats::setNames(x, tolower(names(x))))(),
meta = dd
)
}
### Completion
#' Completion marking based on completed upload
#'
#' @param upload output list from `REDCapR::redcap_write()`
#' @param ls output list from `ds2dd_detailed()`
#'
#' @return list with `REDCapR::redcap_write()` results
mark_complete <- function(upload, ls) {
data <- ls$data
meta <- ls$meta
forms <- unique(meta$form_name)
cbind(
data[[1]][data[[1]] %in% upload$affected_ids],
data.frame(matrix(2,
ncol = length(forms),
nrow = upload$records_affected_count
))
) |>
stats::setNames(c(names(data)[1], paste0(forms, "_complete")))
}