REDCapCAST/R/utils.r

548 lines
14 KiB
R

#' focused_metadata
#' @description Extracts limited metadata for variables in a dataset
#' @param metadata A dataframe containing metadata
#' @param vars_in_data Vector of variable names in the dataset
#' @return A dataframe containing metadata for the variables in the dataset
#' @export
#'
focused_metadata <- function(metadata, vars_in_data) {
if (any(c("tbl_df", "tbl") %in% class(metadata))) {
metadata <- data.frame(metadata)
}
field_name <- grepl(".*[Ff]ield[._][Nn]ame$", names(metadata))
field_type <- grepl(".*[Ff]ield[._][Tt]ype$", names(metadata))
fields <-
metadata[
!metadata[, field_type] %in% c("descriptive", "checkbox") &
metadata[, field_name] %in% vars_in_data,
field_name
]
# Process checkbox fields
if (any(metadata[, field_type] == "checkbox")) {
# Getting base field names from checkbox fields
vars_check <-
sub(pattern = "___.*$", replacement = "", vars_in_data)
# Processing
checkbox_basenames <-
metadata[
metadata[, field_type] == "checkbox" &
metadata[, field_name] %in% vars_check,
field_name
]
fields <- c(fields, checkbox_basenames)
}
# Process instrument status fields
form_names <-
unique(metadata[, grepl(
".*[Ff]orm[._][Nn]ame$",
names(metadata)
)][metadata[, field_name]
%in% fields])
form_complete_fields <- paste0(form_names, "_complete")
fields <- c(fields, form_complete_fields)
# Process survey timestamps
timestamps <-
intersect(vars_in_data, paste0(form_names, "_timestamp"))
if (length(timestamps)) {
timestamp_fields <- timestamps
fields <- c(fields, timestamp_fields)
}
# Process ".*\\.factor" fields supplied by REDCap's export data R script
if (any(grepl("\\.factor$", vars_in_data))) {
factor_fields <-
do.call(
"rbind",
apply(fields,
1,
function(x, y) {
field_indices <- grepl(paste0("^", x[1], "\\.factor$"), y)
if (any(field_indices)) {
data.frame(
field_name = y[field_indices],
form_name = x[2],
stringsAsFactors = FALSE,
row.names = NULL
)
}
},
y = vars_in_data
)
)
fields <- c(fields, factor_fields[, 1])
}
metadata[metadata[, field_name] %in% fields, ]
}
#' clean_redcap_name
#' @description
#' Stepwise removal on non-alphanumeric characters, trailing white space,
#' substitutes spaces for underscores and converts to lower case.
#' Trying to make up for different naming conventions.
#'
#' @param x vector or data frame for cleaning
#'
#' @return vector or data frame, same format as input
#' @export
#'
clean_redcap_name <- function(x) {
gsub(
" ", "_",
gsub(
"[' ']$", "",
gsub(
"[^a-z0-9' '_]", "",
tolower(x)
)
)
)
}
#' Sanitize list of data frames
#'
#' Removing empty rows
#' @param l A list of data frames.
#' @param generic.names A vector of generic names to be excluded.
#'
#' @return A list of data frames with generic names excluded.
#'
#' @export
#'
#'
sanitize_split <- function(l,
generic.names = c(
"redcap_event_name",
"redcap_repeat_instrument",
"redcap_repeat_instance"
)) {
generic.names <- c(
get_id_name(l),
generic.names,
paste0(names(l), "_complete")
)
lapply(l, function(i) {
if (ncol(i) > 2) {
s <- data.frame(i[, !colnames(i) %in% generic.names])
i[!apply(is.na(s), MARGIN = 1, FUN = all), ]
} else {
i
}
})
}
#' Get the id name
#'
#' @param data data frame or list
#'
#' @return character vector
get_id_name <- function(data) {
if ("list" %in% class(data)) {
do.call(c, lapply(data, names))[[1]]
} else {
names(data)[[1]]
}
}
#' Match fields to forms
#'
#' @param metadata A data frame containing field names and form names
#' @param vars_in_data A character vector of variable names
#'
#' @return A data frame containing field names and form names
#'
#' @export
#'
#'
match_fields_to_form <- function(metadata, vars_in_data) {
metadata <- data.frame(metadata)
field_form_name <- grepl(".*([Ff]ield|[Ff]orm)[._][Nn]ame$", names(metadata))
field_type <- grepl(".*[Ff]ield[._][Tt]ype$", names(metadata))
fields <- metadata[
!metadata[, field_type] %in% c("descriptive", "checkbox"),
field_form_name
]
names(fields) <- c("field_name", "form_name")
# Process instrument status fields
form_names <- unique(metadata[, grepl(
".*[Ff]orm[._][Nn]ame$",
names(metadata)
)])
form_complete_fields <- data.frame(
field_name = paste0(form_names, "_complete"),
form_name = form_names,
stringsAsFactors = FALSE
)
fields <- rbind(fields, form_complete_fields)
# Process survey timestamps
timestamps <-
intersect(vars_in_data, paste0(form_names, "_timestamp"))
if (length(timestamps)) {
timestamp_fields <- data.frame(
field_name = timestamps,
form_name = sub("_timestamp$", "", timestamps),
stringsAsFactors = FALSE
)
fields <- rbind(fields, timestamp_fields)
}
# Process checkbox fields
if (any(metadata[, field_type] == "checkbox")) {
checkbox_basenames <- metadata[
metadata[, field_type] == "checkbox",
field_form_name
]
checkbox_fields <-
do.call(
"rbind",
apply(checkbox_basenames,
1,
function(x, y) {
data.frame(
field_name =
y[grepl(paste0("^", x[1], "___((?!\\.factor).)+$"),
y,
perl = TRUE
)],
form_name = x[2],
stringsAsFactors = FALSE,
row.names = NULL
)
},
y = vars_in_data
)
)
fields <- rbind(fields, checkbox_fields)
}
# Process ".*\\.factor" fields supplied by REDCap's export data R script
if (any(grepl("\\.factor$", vars_in_data))) {
factor_fields <-
do.call(
"rbind",
apply(fields,
1,
function(x, y) {
field_indices <- grepl(paste0("^", x[1], "\\.factor$"), y)
if (any(field_indices)) {
data.frame(
field_name = y[field_indices],
form_name = x[2],
stringsAsFactors = FALSE,
row.names = NULL
)
}
},
y = vars_in_data
)
)
fields <- rbind(fields, factor_fields)
}
fields
}
#' Split a data frame into separate tables for each form
#'
#' @param table A data frame
#' @param universal_fields A character vector of fields that should be included
#' in every table
#' @param fields A two-column matrix containing the names of fields that should
#' be included in each form
#'
#' @return A list of data frames, one for each non-repeating form
#'
#' @export
#'
#' @examples
#' # Create a table
#' table <- data.frame(
#' id = c(1, 2, 3, 4, 5),
#' form_a_name = c("John", "Alice", "Bob", "Eve", "Mallory"),
#' form_a_age = c(25, 30, 25, 15, 20),
#' form_b_name = c("John", "Alice", "Bob", "Eve", "Mallory"),
#' form_b_gender = c("M", "F", "M", "F", "F")
#' )
#'
#' # Create the universal fields
#' universal_fields <- c("id")
#'
#' # Create the fields
#' fields <- matrix(
#' c(
#' "form_a_name", "form_a",
#' "form_a_age", "form_a",
#' "form_b_name", "form_b",
#' "form_b_gender", "form_b"
#' ),
#' ncol = 2, byrow = TRUE
#' )
#'
#' # Split the table
#' split_non_repeating_forms(table, universal_fields, fields)
split_non_repeating_forms <-
function(table, universal_fields, fields) {
forms <- unique(fields[[2]])
x <- lapply(
forms,
function(x) {
table[names(table) %in% union(
universal_fields,
fields[fields[, 2] == x, 1]
)]
}
)
structure(x, names = forms)
}
#' Extended string splitting
#'
#' Can be used as a substitute of the base function. Main claim to fame is
#' easing the split around the defined delimiter, see example.
#' @param x data
#' @param split delimiter
#' @param type Split type. Can be c("classic", "before", "after", "around")
#' @param perl perl param from strsplit()
#' @param ... additional parameters are passed to base strsplit handling splits
#'
#' @return list
#' @export
#'
#' @examples
#' test <- c("12 months follow-up", "3 steps", "mRS 6 weeks",
#' "Counting to 231 now")
#' strsplitx(test, "[0-9]", type = "around")
strsplitx <- function(x,
split,
type = "classic",
perl = FALSE,
...) {
if (type == "classic") {
# use base::strsplit
out <- base::strsplit(x = x, split = split, perl = perl, ...)
} else if (type == "before") {
# split before the delimiter and keep it
out <- base::strsplit(
x = x,
split = paste0("(?<=.)(?=", split, ")"),
perl = TRUE,
...
)
} else if (type == "after") {
# split after the delimiter and keep it
out <- base::strsplit(
x = x,
split = paste0("(?<=", split, ")"),
perl = TRUE,
...
)
} else if (type == "around") {
# split around the defined delimiter
out <- base::strsplit(gsub(
"~~", "~", # Removes double ~
gsub(
"^~", "", # Removes leading ~
gsub(
# Splits and inserts ~ at all delimiters
paste0("(", split, ")"), "~\\1~", x
)
)
), "~")
} else {
# wrong type input
stop("type must be 'classic', 'after', 'before' or 'around'!")
}
out
}
#' Convert single digits to words
#'
#' @param x data. Handle vectors, data.frames and lists
#' @param lang language. Danish (da) and English (en), Default is "en"
#' @param neutrum for numbers depending on counted word
#' @param everything flag to also split numbers >9 to single digits
#'
#' @return returns characters in same format as input
#' @export
#'
#' @examples
#' d2w(c(2:8, 21))
#' d2w(data.frame(2:7, 3:8, 1), lang = "da", neutrum = TRUE)
#'
#' ## If everything=T, also larger numbers are reduced.
#' ## Elements in the list are same length as input
#' d2w(list(2:8, c(2, 6, 4, 23), 2), everything = TRUE)
#'
d2w <- function(x, lang = "en", neutrum = FALSE, everything = FALSE) {
# In Danish the written 1 depends on the counted word
if (neutrum) nt <- "t" else nt <- "n"
# A sapply() call with nested lapply() to handle vectors, data.frames
# and lists
convert <- function(x, lang, neutrum) {
zero_nine <- data.frame(
num = 0:9,
en = c(
"zero",
"one",
"two",
"three",
"four",
"five",
"six",
"seven",
"eight",
"nine"
),
da = c(
"nul",
paste0("e", nt),
"to",
"tre",
"fire",
"fem",
"seks",
"syv",
"otte",
"ni"
)
)
wrd <- lapply(x, function(i) {
zero_nine[, tolower(lang)][zero_nine[, 1] == i]
})
sub <- lengths(wrd) == 1
x[sub] <- wrd[sub]
unlist(x)
}
# Also converts numbers >9 to single digits and writes out
# Uses strsplitx()
if (everything) {
out <- sapply(x, function(y) {
do.call(c, lapply(y, function(z) {
v <- strsplitx(z, "[0-9]", type = "around")
Reduce(paste, sapply(v, convert, lang = lang, neutrum = neutrum))
}))
})
} else {
out <- sapply(x, convert, lang = lang, neutrum = neutrum)
}
if (is.data.frame(x)) out <- data.frame(out)
out
}
#' Test if repeatable or longitudinal
#'
#' @param data data set
#' @param generics default is "redcap_event_name", "redcap_repeat_instrument"
#' and "redcap_repeat_instance"
#'
#' @return logical
#' @export
#' @examples
#' is_repeated_longitudinal(c("record_id", "age", "record_id", "gender"))
#' is_repeated_longitudinal(redcapcast_data)
#' is_repeated_longitudinal(list(redcapcast_data))
is_repeated_longitudinal <- function(data, generics = c(
"redcap_event_name",
"redcap_repeat_instrument",
"redcap_repeat_instance"
)) {
if ("list" %in% class(data)) {
names <- data |>
lapply(names) |>
purrr::list_c()
} else if ("data.frame" %in% class(data)) {
names <- names(data)
} else if ("character" %in% class(data)) {
names <- data
}
any(generics %in% names)
}
#' Helper to import files correctly
#'
#' @param filenames file names
#'
#' @return character vector
#' @export
#'
#' @examples
#' file_extension(list.files(here::here(""))[[2]])[[1]]
file_extension <- function(filenames) {
sub(pattern = "^(.*\\.|[^.]+)(?=[^.]*)", replacement = "",
filenames,
perl = TRUE)
}
#' Flexible file import based on extension
#'
#' @param file file name
#' @param consider.na character vector of strings to consider as NAs
#'
#' @return tibble
#' @export
#'
#' @examples
#' read_input("https://raw.githubusercontent.com/agdamsbo/cognitive.index.lookup/main/data/sample.csv")
read_input <- function(file, consider.na = c("NA", '""', "")) {
ext <- file_extension(file)
tryCatch(
{
if (ext == "csv") {
df <- readr::read_csv(file = file, na = consider.na)
} else if (ext %in% c("xls", "xlsx")) {
df <- openxlsx2::read_xlsx(file = file, na.strings = consider.na)
} else if (ext == "dta") {
df <- haven::read_dta(file = file)
} else {
stop("Input file format has to be either '.csv', '.xls' or '.xlsx'")
}
},
error = function(e) {
# return a safeError if a parsing error occurs
stop(shiny::safeError(e))
}
)
df
}