REDCapCAST/R/R/REDCap_split.r

231 lines
6.3 KiB
R

#' Split REDCap repeating instruments table into multiple tables
#'
#' This will take output from a REDCap export and split it into a base table
#' and child tables for each repeating instrument. Metadata
#' is used to determine which fields should be included in each resultant table.
#'
#' @param records Exported project records. May be a \code{data.frame},
#' \code{response}, or \code{character} vector containing JSON from an API
#' call.
#' @param metadata Project metadata (the data dictionary). May be a
#' \code{data.frame}, \code{response}, or \code{character} vector containing
#' JSON from an API call.
#' @author Paul W. Egeler, M.S., GStat
#' @examples
#' \dontrun{
#' # Using an API call -------------------------------------------------------
#'
#' library(RCurl)
#'
#' # Get the records
#' records <- postForm(
#' uri = api_url, # Supply your site-specific URI
#' token = api_token, # Supply your own API token
#' content = 'record',
#' format = 'json',
#' returnFormat = 'json'
#' )
#'
#' # Get the metadata
#' metadata <- postForm(
#' uri = api_url, # Supply your site-specific URI
#' token = api_token, # Supply your own API token
#' content = 'metadata',
#' format = 'json'
#' )
#'
#' # Convert exported JSON strings into a list of data.frames
#' REDCapRITS::REDCap_split(records, metadata)
#'
#' # Using a raw data export -------------------------------------------------
#'
#' # Get the records
#' records <- read.csv("/path/to/data/ExampleProject_DATA_2018-06-03_1700.csv")
#'
#' # Get the metadata
#' metadata <- read.csv("/path/to/data/ExampleProject_DataDictionary_2018-06-03.csv")
#'
#' # Split the tables
#' REDCapRITS::REDCap_split(records, metadata)
#'
#' # In conjunction with the R export script ---------------------------------
#'
#' # You must set the working directory first since the REDCap data export script
#' # contains relative file references.
#' setwd("/path/to/data/")
#'
#' # Run the data export script supplied by REDCap.
#' # This will create a data.frame of your records called 'data'
#' source("ExampleProject_R_2018-06-03_1700.r")
#'
#' # Get the metadata
#' metadata <- read.csv("ExampleProject_DataDictionary_2018-06-03.csv")
#'
#' # Split the tables
#' REDCapRITS::REDCap_split(data, metadata)
#' }
#' @return A list of \code{"data.frame"}s: one base table and zero or more
#' tables for each repeating instrument.
#' @include process_user_input.r
#' @export
REDCap_split <- function(records, metadata) {
# Process user input
records <- process_user_input(records)
metadata <- process_user_input(metadata)
# Get the variable names in the dataset
vars_in_data <- names(records)
# Check to see if there were any repeating instruments
if (!any(vars_in_data == "redcap_repeat_instrument")) {
message("There are no repeating instruments in this data.")
return(list(records))
}
# Standardize variable names for metadata
names(metadata) <- c(
"field_name", "form_name", "section_header", "field_type",
"field_label", "select_choices_or_calculations", "field_note",
"text_validation_type_or_show_slider_number", "text_validation_min",
"text_validation_max", "identifier", "branching_logic", "required_field",
"custom_alignment", "question_number", "matrix_group_name", "matrix_ranking",
"field_annotation"
)
# Make sure that no metadata columns are factors
metadata <- rapply(metadata, as.character, classes = "factor", how = "replace")
# Find the fields and associated form
fields <- metadata[
!metadata$field_type %in% c("descriptive", "checkbox"),
c("field_name", "form_name")
]
# Process instrument status fields
form_names <- unique(metadata$form_name)
form_complete_fields <- data.frame(
field_name = paste0(form_names, "_complete"),
form_name = form_names,
stringsAsFactors = FALSE
)
fields <- rbind(fields, form_complete_fields)
# Process checkbox fields
if (any(metadata$field_type == "checkbox")) {
checkbox_basenames <- metadata[
metadata$field_type == "checkbox",
c("field_name", "form_name")
]
checkbox_fields <-
do.call(
"rbind",
apply(
checkbox_basenames,
1,
function(x, y)
data.frame(
field_name = y[grepl(paste0("^", x[1], "___((?!\\.factor).)+$"), y, perl = TRUE)],
form_name = x[2],
stringsAsFactors = FALSE,
row.names = NULL
),
y = vars_in_data
)
)
fields <- rbind(fields, checkbox_fields)
}
# Process ".*\\.factor" fields supplied by REDCap's export data R script
if (any(grepl("\\.factor$", vars_in_data))) {
factor_fields <-
do.call(
"rbind",
apply(
fields,
1,
function(x, y) {
field_indices <- grepl(paste0("^", x[1], "\\.factor$"), y)
if (any(field_indices))
data.frame(
field_name = y[field_indices],
form_name = x[2],
stringsAsFactors = FALSE,
row.names = NULL
)
},
y = vars_in_data
)
)
fields <- rbind(fields, factor_fields)
}
# Identify the subtables in the data
subtables <- unique(records$redcap_repeat_instrument)
subtables <- subtables[subtables != ""]
# Variables to be present in each output table
universal_fields <- c(
vars_in_data[1],
grep(
"^redcap_(?!(repeat)).*",
vars_in_data,
value = TRUE,
perl = TRUE
)
)
# Variables to be at the beginning of each repeating instrument
repeat_instrument_fields <- grep(
"^redcap_repeat.*",
vars_in_data,
value = TRUE
)
# Split the table based on instrument
out <- split.data.frame(records, records$redcap_repeat_instrument)
# Delete the variables that are not relevant
for (i in names(out)) {
if (i == "") {
out_fields <- which(
vars_in_data %in% c(
universal_fields,
fields[!fields[,2] %in% subtables, 1]
)
)
out[[which(names(out) == "")]] <- out[[which(names(out) == "")]][out_fields]
} else {
out_fields <- which(
vars_in_data %in% c(
universal_fields,
repeat_instrument_fields,
fields[fields[,2] == i, 1]
)
)
out[[i]] <- out[[i]][out_fields]
}
}
out
}