Split REDCap repeating instruments table into multiple tables
Source:R/REDCap_split.r
REDCap_split.Rd
This will take output from a REDCap export and split it into a base table and child tables for each repeating instrument. Metadata is used to determine which fields should be included in each resultant table.
Usage
REDCap_split(
records,
metadata,
primary_table_name = "",
forms = c("repeating", "all")
)
Arguments
- records
Exported project records. May be a
data.frame
,response
, orcharacter
vector containing JSON from an API call.- metadata
Project metadata (the data dictionary). May be a
data.frame
,response
, orcharacter
vector containing JSON from an API call.- primary_table_name
Name given to the list element for the primary output table (as described in README.md). Ignored if
forms = 'all'
.- forms
Indicate whether to create separate tables for repeating instruments only or for all forms.
Value
A list of "data.frame"
s. The number of tables will differ
depending on the forms
option selected.
'repeating'
: one base table and one or more tables for each repeating instrument.'all'
: a data.frame for each instrument, regardless of whether it is a repeating instrument or not.
Examples
if (FALSE) { # \dontrun{
# Using an API call -------------------------------------------------------
library(RCurl)
# Get the records
records <- postForm(
uri = api_url, # Supply your site-specific URI
token = api_token, # Supply your own API token
content = "record",
format = "json",
returnFormat = "json"
)
# Get the metadata
metadata <- postForm(
uri = api_url, # Supply your site-specific URI
token = api_token, # Supply your own API token
content = "metadata",
format = "json"
)
# Convert exported JSON strings into a list of data.frames
REDCapRITS::REDCap_split(records, metadata)
# Using a raw data export -------------------------------------------------
# Get the records
records <- read.csv("/path/to/data/ExampleProject_DATA_2018-06-03_1700.csv")
# Get the metadata
metadata <- read.csv(
"/path/to/data/ExampleProject_DataDictionary_2018-06-03.csv"
)
# Split the tables
REDCapRITS::REDCap_split(records, metadata)
# In conjunction with the R export script ---------------------------------
# You must set the working directory first since the REDCap data export
# script contains relative file references.
old <- getwd()
setwd("/path/to/data/")
# Run the data export script supplied by REDCap.
# This will create a data.frame of your records called 'data'
source("ExampleProject_R_2018-06-03_1700.r")
# Get the metadatan
metadata <- read.csv("ExampleProject_DataDictionary_2018-06-03.csv")
# Split the tables
REDCapRITS::REDCap_split(data, metadata)
setwd(old)
} # }