--- title: "Shiny-app" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Shiny-app} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` To make the easiest possible transition from spreadsheet/dataset to REDCap, I have created a small app, which adds a graphical interface to the casting of a data dictionary and data upload. Install the package and launch the app as follows: ```{r eval=FALSE} REDCapCAST::shiny_cast() ``` The app primarily wraps one function: `ds2dd_detailed()`. ```{r} library(REDCapCAST) ds <- REDCap_split( records = redcapcast_data, metadata = redcapcast_meta, forms = "all" ) |> sanitize_split() |> redcap_wider() str(ds) ``` ```{r} ds|> ds2dd_detailed()|> purrr::pluck("data") |> str() ``` ```{r} ds|> ds2dd_detailed()|> purrr::pluck("meta") |> head(10) ``` Different data formats are accepted, which all mostly implements the `readr::col_guess()` functionality to parse column classes. To ensure uniformity in data import this parsing has been implemented on its own to use with `ds2dd_detailed()` or any other data set for that matter: ```{r} ds_parsed <- redcapcast_data |> dplyr::mutate(dplyr::across(dplyr::everything(),as.character)) |> parse_data() str(ds_parsed) ``` It will ignore specified columns, which is neat for numeric-looking strings like cpr-with a leading 0: ```{r} redcapcast_data |> dplyr::mutate(dplyr::across(dplyr::everything(),as.character)) |> parse_data(ignore.vars = c("record_id","cpr")) |> str() ``` ```{r} ``` Column classes can be passed to `parse_data()`. Making a few crude assumption for factorising data, `numchar2fct()` factorises numerical and character vectors based on a set threshold for unique values: ```{r} mtcars |> str() mtcars |> numchar2fct(numeric.threshold = 6) |> str() ``` ```{r} ds_parsed|> numchar2fct(numeric.threshold = 2) |> str() ```