#' Download REDCap data #' #' Wrapper function for using REDCapR::redcap_read and REDCapRITS::REDCap_split #' including some clean-up. Works with longitudinal projects with repeating #' instruments. #' @param uri REDCap database uri #' @param token API token #' @param records records to download #' @param fields fields to download #' @param events events to download #' @param forms forms to download #' @param raw_or_label raw or label tags #' @param generics vector of auto-generated generic variable names to #' ignore when discarding empty rows #' @param ... ekstra parameters for REDCapR::redcap_read_oneshot #' #' @return list of instruments #' @importFrom REDCapR redcap_metadata_read redcap_read #' @export #' #' @examples #' # Examples will be provided later read_redcap_tables <- function(uri, token, records = NULL, fields = NULL, events = NULL, forms = NULL, raw_or_label = "label", generics = c( "record_id", "redcap_event_name", "redcap_repeat_instrument", "redcap_repeat_instance" ), ...) { # Notes to self: Based on the metadata, this functionality could be # introduced without using the REDCapRITS package.. To be tried.. # # This does not handle repeated instruments!! This should be implemented. d <- REDCapR::redcap_read_oneshot( redcap_uri = uri, token = token, fields = fields, events = events, forms = forms, records = records, raw_or_label = raw_or_label, ... ) m <- REDCapR::redcap_metadata_read (redcap_uri = uri, token = token) l <- REDCap_split(d$data, m$data[m$data$field_name %in% names(d$data), ], forms = "all") lapply(l, function(i) { if (ncol(i) > 2) { s <- data.frame(i[, !colnames(i) %in% generics]) i[!apply(is.na(s), MARGIN = 1, FUN = all), ] } else { i } }) }