focused_metadata <- function(metadata, vars_in_data) { # metadata <- m$data # vars_in_data <- names(d$data) fields <- metadata[!metadata$field_type %in% c("descriptive", "checkbox") & metadata$field_name %in% vars_in_data, "field_name"] # Process checkbox fields if (any(metadata$field_type == "checkbox")) { # Getting base field names from checkbox fields vars_check <- gsub(pattern = "___(\\d+)",replacement = "", vars_in_data) # Processing checkbox_basenames <- metadata[metadata$field_type == "checkbox" & metadata$field_name %in% vars_check, "field_name"] fields <- rbind(fields, checkbox_basenames) } # Process instrument status fields form_names <- unique(metadata$form_name[metadata$field_name %in% fields$field_name]) form_complete_fields <- data.frame( field_name = paste0(form_names, "_complete"), stringsAsFactors = FALSE ) fields <- rbind(fields, form_complete_fields) # Process survey timestamps timestamps <- intersect(vars_in_data, paste0(form_names, "_timestamp")) if (length(timestamps)) { timestamp_fields <- data.frame( field_name = timestamps, stringsAsFactors = FALSE ) fields <- rbind(fields, timestamp_fields) } # Process ".*\\.factor" fields supplied by REDCap's export data R script if (any(grepl("\\.factor$", vars_in_data))) { factor_fields <- do.call("rbind", apply(fields, 1, function(x, y) { field_indices <- grepl(paste0("^", x[1], "\\.factor$"), y) if (any(field_indices)) data.frame( field_name = y[field_indices], form_name = x[2], stringsAsFactors = FALSE, row.names = NULL ) }, y = vars_in_data)) fields <- rbind(fields, factor_fields) } metadata[metadata$field_name %in% fields$field_name,] } match_fields_to_form <- function(metadata, vars_in_data) { fields <- metadata[!metadata$field_type %in% c("descriptive", "checkbox"), c("field_name", "form_name")] # Process instrument status fields form_names <- unique(metadata$form_name) form_complete_fields <- data.frame( field_name = paste0(form_names, "_complete"), form_name = form_names, stringsAsFactors = FALSE ) fields <- rbind(fields, form_complete_fields) # Process survey timestamps timestamps <- intersect(vars_in_data, paste0(form_names, "_timestamp")) if (length(timestamps)) { timestamp_fields <- data.frame( field_name = timestamps, form_name = sub("_timestamp$", "", timestamps), stringsAsFactors = FALSE ) fields <- rbind(fields, timestamp_fields) } # Process checkbox fields if (any(metadata$field_type == "checkbox")) { checkbox_basenames <- metadata[metadata$field_type == "checkbox", c("field_name", "form_name")] checkbox_fields <- do.call("rbind", apply(checkbox_basenames, 1, function(x, y) data.frame( field_name = y[grepl(paste0("^", x[1], "___((?!\\.factor).)+$"), y, perl = TRUE)], form_name = x[2], stringsAsFactors = FALSE, row.names = NULL ), y = vars_in_data)) fields <- rbind(fields, checkbox_fields) } # Process ".*\\.factor" fields supplied by REDCap's export data R script if (any(grepl("\\.factor$", vars_in_data))) { factor_fields <- do.call("rbind", apply(fields, 1, function(x, y) { field_indices <- grepl(paste0("^", x[1], "\\.factor$"), y) if (any(field_indices)) data.frame( field_name = y[field_indices], form_name = x[2], stringsAsFactors = FALSE, row.names = NULL ) }, y = vars_in_data)) fields <- rbind(fields, factor_fields) } fields } split_non_repeating_forms <- function(table, universal_fields, fields) { forms <- unique(fields[[2]]) x <- lapply(forms, function (x) { table[names(table) %in% union(universal_fields, fields[fields[, 2] == x, 1])] }) structure(x, names = forms) }