#' Download REDCap data #' #' @description #' Implementation of passed on to \link[REDCapCAST]{REDCap_split} with a focused #' data acquisition approach using passed on to \link[REDCapR]{redcap_read} and #' only downloading specified fields, forms and/or events using the built-in #' focused_metadata including some clean-up. #' Works with classical and longitudinal projects with or without repeating #' instruments. #' Will preserve metadata in the data.frames as labels. #' #' @param uri REDCap database API uri #' @param token API token #' @param records records to download #' @param fields fields to download #' @param events events to download #' @param forms forms to download #' @param raw_or_label raw or label tags. Can be "raw", "label" or "both". #' #' * "raw": Standard \link[REDCapR]{redcap_read} method to get raw values. #' * "label": Standard \link[REDCapR]{redcap_read} method to get label values. #' * "both": Get raw values with REDCap labels applied as labels. Use #' \link[REDCapCAST]{as_factor} to format factors with original labels and use #' the `gtsummary` package functions like \link[gtsummary]{tbl_summary} to #' easily get beautiful tables with original labels from REDCap. Use #' \link[REDCapCAST]{fct_drop} to drop empty levels. #' #' @param split_forms Whether to split "repeating" or "all" forms, default is #' all. #' @param ... passed on to \link[REDCapR]{redcap_read} #' #' @return list of instruments #' @importFrom REDCapR redcap_metadata_read redcap_read redcap_event_instruments #' @include utils.r #' @export #' #' @examples #' # Examples will be provided later read_redcap_tables <- function(uri, token, records = NULL, fields = NULL, events = NULL, forms = NULL, raw_or_label = c("raw","label","both"), split_forms = "all", ...) { raw_or_label <- match.arg(raw_or_label, c("raw","label","both")) # Getting metadata m <- REDCapR::redcap_metadata_read(redcap_uri = uri, token = token)[["data"]] if (!is.null(fields)) { fields_test <- fields %in% c(m$field_name,paste0(unique(m$form_name),"_complete")) if (any(!fields_test)) { print(paste0("The following field names are invalid: ", paste(fields[!fields_test], collapse = ", "), ".")) stop("Not all supplied field names are valid") } } if (!is.null(forms)) { forms_test <- forms %in% unique(m$form_name) if (any(!forms_test)) { print(paste0("The following form names are invalid: ", paste(forms[!forms_test], collapse = ", "), ".")) stop("Not all supplied form names are valid") } } if (!is.null(events)) { arm_event_inst <- REDCapR::redcap_event_instruments( redcap_uri = uri, token = token ) event_test <- events %in% unique(arm_event_inst$data$unique_event_name) if (any(!event_test)) { print(paste0("The following event names are invalid: ", paste(events[!event_test], collapse = ", "), ".")) stop("Not all supplied event names are valid") } } if (raw_or_label=="both"){ rorl <- "raw" } else { rorl <- raw_or_label } # Getting dataset d <- REDCapR::redcap_read( redcap_uri = uri, token = token, fields = fields, events = events, forms = forms, records = records, raw_or_label = rorl, ... )[["data"]] if (raw_or_label=="both"){ d <- apply_field_label(data=d,meta=m) d <- apply_factor_labels(data=d,meta=m) } # Process repeat instrument naming # Removes any extra characters other than a-z, 0-9 and "_", to mimic raw # instrument names. if ("redcap_repeat_instrument" %in% names(d)) { d$redcap_repeat_instrument <- clean_redcap_name(d$redcap_repeat_instrument) } # Processing metadata to reflect focused dataset m <- focused_metadata(m, names(d)) # Splitting out <- REDCap_split(d, m, forms = split_forms, primary_table_name = "" ) sanitize_split(out) } #' Very simple function to remove rich text formatting from field label #' and save the first paragraph ('

...

'). #' #' @param data field label #' #' @return character vector #' @export #' #' @examples #' clean_field_label("

Fazekas score

") clean_field_label <- function(data) { out <- data |> lapply(\(.x){ unlist(strsplit(.x, " lapply(\(.x){ splt <- unlist(strsplit(.x, ">")) splt[length(splt)] }) Reduce(c, out) } #' Converts REDCap choices to factor levels and stores in labels attribute #' #' @description #' Applying \link[REDCapCAST]{as_factor} to the data.frame or variable, will #' coerce to a factor. #' #' @param data vector #' @param meta vector of REDCap choices #' #' @return vector of class "labelled" with a "labels" attribute #' @export #' #' @examples #' format_redcap_factor(sample(1:3,20,TRUE),"1, First. | 2, second | 3, THIRD") format_redcap_factor <- function(data, meta) { lvls <- strsplit(meta, " | ", fixed = TRUE) |> unlist() |> lapply(\(.x){ splt <- unlist(strsplit(.x, ", ")) stats::setNames(splt[1], nm = paste(splt[-1], collapse = ", ")) }) |> (\(.x){ Reduce(c, .x) })() set_attr(data, label = lvls, attr = "labels") |> set_attr(data, label = "labelled", attr = "class") } #' Apply REDCap filed labels to data frame #' #' @param data REDCap exported data set #' @param meta REDCap data dictionary #' #' @return data.frame #' @export #' apply_field_label <- function(data,meta){ purrr::imap(data, \(.x, .i){ if (.i %in% meta$field_name) { # Does not handle checkboxes out <- set_attr(.x, label = clean_field_label(meta$field_label[meta$field_name == .i]), attr = "label" ) out } else { .x } }) |> dplyr::bind_cols() } #' Preserve all factor levels from REDCap data dictionary in data export #' #' @param data REDCap exported data set #' @param meta REDCap data dictionary #' #' @return data.frame #' @export #' apply_factor_labels <- function(data,meta=NULL){ if (is.list(data)){ meta <- data$meta data <- data$data } else if (is.null(meta)) { stop("Please provide a data frame for meta") } purrr::imap(data, \(.x, .i){ if (any(c("radio", "dropdown") %in% meta$field_type[meta$field_name == .i]) || is.factor(.x)) { format_redcap_factor(.x, meta$select_choices_or_calculations[meta$field_name == .i]) } else { .x } }) |> dplyr::bind_cols() }