---
title: "Shiny-app"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Shiny-app}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
```
To make the easiest possible transition from spreadsheet/dataset to REDCap, I have created a small app, which adds a graphical interface to the casting of a data dictionary and data upload. Install the package and launch the app as follows:
```{r eval=FALSE}
REDCapCAST::shiny_cast()
```
The app primarily wraps one function: `ds2dd_detailed()`.
```{r}
library(REDCapCAST)
ds <- REDCap_split(
records = redcapcast_data,
metadata = redcapcast_meta,
forms = "all"
) |>
sanitize_split() |>
redcap_wider()
str(ds)
```
```{r}
ds|>
ds2dd_detailed()|>
purrr::pluck("data") |>
str()
```
```{r}
ds|>
ds2dd_detailed()|>
purrr::pluck("meta") |>
head(10)
```
Different data formats are accepted, which all mostly implements the `readr::col_guess()` functionality to parse column classes.
To ensure uniformity in data import this parsing has been implemented on its own to use with `ds2dd_detailed()` or any other data set for that matter:
```{r}
ds_parsed <- redcapcast_data |>
dplyr::mutate(dplyr::across(dplyr::everything(),as.character)) |>
parse_data()
str(ds_parsed)
```
It will ignore specified columns, which is neat for numeric-looking strings like cpr-with a leading 0:
```{r}
redcapcast_data |>
dplyr::mutate(dplyr::across(dplyr::everything(),as.character)) |>
parse_data(ignore.vars = c("record_id","cpr")) |>
str()
```
```{r}
```
Column classes can be passed to `parse_data()`.
Making a few crude assumption for factorising data, `numchar2fct()` factorises numerical and character vectors based on a set threshold for unique values:
```{r}
mtcars |> str()
mtcars |>
numchar2fct(numeric.threshold = 6) |>
str()
```
```{r}
ds_parsed|>
numchar2fct(numeric.threshold = 2) |>
str()
```