utils::globalVariables(c( "redcap_wider", "event.glue", "inst.glue" )) #' Transforms list of REDCap data.frames to a single wide data.frame #' #' @description Converts a list of REDCap data.frames from long to wide format. #' In essence it is a wrapper for the \link[tidyr]{pivot_wider} function applied #' on a REDCap output (from \link[REDCapCAST]{read_redcap_tables}) or manually #' split by \link[REDCapCAST]{REDCap_split}. #' #' @param data A list of data frames #' @param event.glue A \link[glue]{glue} string for repeated events naming #' @param inst.glue A \link[glue]{glue} string for repeated instruments naming #' #' @return data.frame in wide format #' @export #' #' @importFrom tidyr pivot_wider #' @importFrom tidyselect all_of #' @importFrom purrr reduce #' #' @examples #' # Longitudinal #' list1 <- list( #' data.frame( #' record_id = c(1, 2, 1, 2), #' redcap_event_name = c("baseline", "baseline", "followup", "followup"), #' age = c(25, 26, 27, 28) #' ), #' data.frame( #' record_id = c(1, 2), #' redcap_event_name = c("baseline", "baseline"), #' gender = c("male", "female") #' ) #' ) #' redcap_wider(list1) #' # Simpel with two instruments #' list2 <- list( #' data.frame( #' record_id = c(1, 2), #' age = c(25, 26) #' ), #' data.frame( #' record_id = c(1, 2), #' gender = c("male", "female") #' ) #' ) #' redcap_wider(list2) #' # Simple with single instrument #' list3 <- list(data.frame( #' record_id = c(1, 2), #' age = c(25, 26) #' )) #' redcap_wider(list3) #' # Longitudinal with repeatable instruments #' list4 <- list( #' data.frame( #' record_id = c(1, 2, 1, 2), #' redcap_event_name = c("baseline", "baseline", "followup", "followup"), #' age = c(25, 26, 27, 28) #' ), #' data.frame( #' record_id = c(1, 1, 1, 1, 2, 2, 2, 2), #' redcap_event_name = c( #' "baseline", "baseline", "followup", "followup", #' "baseline", "baseline", "followup", "followup" #' ), #' redcap_repeat_instrument = "walk", #' redcap_repeat_instance = c(1, 2, 1, 2, 1, 2, 1, 2), #' dist = c(40, 32, 25, 33, 28, 24, 23, 36) #' ), #' data.frame( #' record_id = c(1, 2), #' redcap_event_name = c("baseline", "baseline"), #' gender = c("male", "female") #' ) #' ) #' redcap_wider(list4) redcap_wider <- function(data, event.glue = "{.value}____{redcap_event_name}", inst.glue = "{.value}____{redcap_repeat_instance}") { # browser() if (!is_repeated_longitudinal(data)) { if (is.list(data)) { if (length(data) == 1) { out <- data[[1]] } else { out <- data |> purrr::reduce(dplyr::left_join) } } else if (is.data.frame(data)) { out <- data } } else { id.name <- do.call(c, lapply(data, names))[[1]] l <- lapply(data, function(i) { # browser() rep_inst <- "redcap_repeat_instrument" %in% names(i) if (rep_inst) { k <- lapply(split(i, f = i[[id.name]]), function(j) { cname <- colnames(j) vals <- cname[!cname %in% c( id.name, "redcap_event_name", "redcap_repeat_instrument", "redcap_repeat_instance" )] s <- tidyr::pivot_wider( j, names_from = "redcap_repeat_instance", values_from = all_of(vals), names_glue = inst.glue ) s[!colnames(s) %in% c("redcap_repeat_instrument")] }) # Labels are removed and restored after bind_rows as class "labelled" # is not supported i <- remove_labelled(k) |> dplyr::bind_rows() all_labels <- save_labels(data) i <- restore_labels(i, all_labels) } event <- "redcap_event_name" %in% names(i) if (event) { event.n <- length(unique(i[["redcap_event_name"]])) > 1 i[["redcap_event_name"]] <- gsub(" ", "_", tolower(i[["redcap_event_name"]])) if (event.n) { cname <- colnames(i) vals <- cname[!cname %in% c(id.name, "redcap_event_name")] s <- tidyr::pivot_wider( i, names_from = "redcap_event_name", values_from = all_of(vals), names_glue = event.glue ) s[colnames(s) != "redcap_event_name"] } else { i[colnames(i) != "redcap_event_name"] } } else { i } }) # out <- Reduce(f = dplyr::full_join, x = l) out <- purrr::reduce(.x = l, .f = dplyr::full_join) } out } # Applies list of attributes to data.frame restore_labels <- function(data, labels) { stopifnot(is.list(labels)) stopifnot(is.data.frame(data)) for (ndx in names(labels)) { data <- purrr::imap(data, \(.y, .j){ if (startsWith(.j, ndx)) { set_attr(.y, labels[[ndx]]) } else { .y } }) |> dplyr::bind_cols() } return(data) } # Extract unique variable attributes from list of data.frames save_labels <- function(data) { stopifnot(is.list(data)) out <- list() for (j in seq_along(data)) { out <- c(out, lapply(data[[j]], get_attr)) } out[!duplicated(names(out))] } # Removes class attributes of class "labelled" or "haven_labelled" remove_labelled <- function(data) { stopifnot(is.list(data)) lapply(data, \(.x) { lapply(.x, \(.y) { if (REDCapCAST::is.labelled(.y)) { set_attr(.y, label = NULL, attr = "class") } else { .y } }) |> dplyr::bind_cols() }) } #' Transfer variable name suffix to label in widened data #' #' @param data data.frame #' @param suffix.sep string to split suffix(es). Passed to \link[base]{strsplit} #' @param attr label attribute. Default is "label" #' @param glue.str glue string for new label. Available variables are "label" #' and "suffixes" #' #' @return data.frame #' @export #' suffix2label <- function(data, suffix.sep = "____", attr = "label", glue.str="{label} ({paste(suffixes,collapse=', ')})") { data |> purrr::imap(\(.d, .i){ suffixes <- unlist(strsplit(.i, suffix.sep))[-1] if (length(suffixes) > 0) { label <- get_attr(.d, attr = attr) set_attr(.d, glue::glue(glue.str), attr = attr ) } else { .d } }) |> dplyr::bind_cols() }