% Generated by roxygen2: do not edit by hand % Please edit documentation in R/REDCap_split.r \name{REDCap_split} \alias{REDCap_split} \title{Split REDCap repeating instruments table into multiple tables} \usage{ REDCap_split(records, metadata) } \arguments{ \item{records}{Exported project records. May be a \code{data.frame} or \code{character} vector containing JSON from an API call.} \item{metadata}{Project metadata (the data dictionary). May be a \code{data.frame} or \code{character} vector containing JSON from an API call.} } \value{ A list of \code{"data.frame"}s: one base table and zero or more tables for each repeating instrument. } \description{ This will take output from a REDCap export and split it into a base table and child tables for each repeating instrument. Metadata is used to determine which fields should be included in each resultant table. } \examples{ \dontrun{ # Using an API call ------------------------------------------------------- library(RCurl) # Get the records records <- postForm( uri = api_url, # Supply your site-specific URI token = api_token, # Supply your own API token content = 'record', format = 'json', returnFormat = 'json' ) # Get the metadata metadata <- postForm( uri = api_url, # Supply your site-specific URI token = api_token, # Supply your own API token content = 'metadata', format = 'json' ) # Convert exported JSON strings into a list of data.frames REDCapRITS::REDCap_split(records, metadata) # Using a raw data export ------------------------------------------------- # Get the records records <- read.csv("/path/to/data/ExampleProject_DATA_2018-06-03_1700.csv") # Get the metadata metadata <- read.csv("/path/to/data/ExampleProject_DataDictionary_2018-06-03.csv") # Split the tables REDCapRITS::REDCap_split(records, metadata) # In conjunction with the R export script --------------------------------- # You must set the working directory first since the REDCap data export script # contains relative file references. setwd("/path/to/data/") # Run the data export script supplied by REDCap. # This will create a data.frame of your records called 'data' source("ExampleProject_R_2018-06-03_1700.r") # Get the metadata metadata <- read.csv("ExampleProject_DataDictionary_2018-06-03.csv") # Split the tables REDCapRITS::REDCap_split(data, metadata) } } \author{ Paul W. Egeler, M.S., GStat }