#' Launch the included Shiny-app for database casting and upload #' #' @description #' Wraps shiny::runApp() #' #' @param ... Arguments passed to shiny::runApp() #' #' @return shiny app #' @export #' #' @examples #' # shiny_cast() #' shiny_cast <- function(...) { appDir <- system.file("shiny-examples", "casting", package = "REDCapCAST") if (appDir == "") { stop("Could not find example directory. Try re-installing `REDCapCAST`.", call. = FALSE) } shiny::runApp(appDir = appDir, ...) } #' DEPRECATED Helper to import files correctly #' #' @param filenames file names #' #' @return character vector #' @export #' #' @examples #' file_extension(list.files(here::here(""))[[2]])[[1]] #' file_extension(c("file.cd..ks","file")) file_extension <- function(filenames) { sub(pattern = "^(.*\\.|[^.]+)(?=[^.]*)", replacement = "", filenames, perl = TRUE) } #' Flexible file import based on extension #' #' @param file file name #' @param consider.na character vector of strings to consider as NAs #' #' @return tibble #' @export #' #' @examples #' read_input("https://raw.githubusercontent.com/agdamsbo/cognitive.index.lookup/main/data/sample.csv") read_input <- function(file, consider.na = c("NA", '""', "")) { ext <- tools::file_ext(file) tryCatch( { if (ext == "csv") { df <- readr::read_csv(file = file, na = consider.na) } else if (ext %in% c("xls", "xlsx")) { df <- openxlsx2::read_xlsx(file = file, na.strings = consider.na) } else if (ext == "dta") { df <- haven::read_dta(file = file) } else if (ext == "ods") { df <- readODS::read_ods(file = file) } else { stop("Input file format has to be on of: '.csv', '.xls', '.xlsx', '.dta' or '.ods'") } }, error = function(e) { # return a safeError if a parsing error occurs stop(shiny::safeError(e)) } ) df }