Skip to contents

This extends [forcats::fct_drop()] to natively work across a data.frame and replaces [base::droplevels()].

Usage

fct_drop(x, ...)

# S3 method for class 'data.frame'
fct_drop(x, ...)

# S3 method for class 'factor'
fct_drop(x, ...)

Arguments

x

Factor to drop unused levels

...

Other arguments passed down to method.

Examples

mtcars |>
  numchar2fct() |>
  fct_drop()
#> # A tibble: 32 × 11
#>      mpg cyl    disp    hp  drat    wt  qsec vs    am    gear  carb 
#>    <dbl> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <fct> <fct> <fct> <fct>
#>  1  21   6      160    110  3.9   2.62  16.5 0     1     4     4    
#>  2  21   6      160    110  3.9   2.88  17.0 0     1     4     4    
#>  3  22.8 4      108     93  3.85  2.32  18.6 1     1     4     1    
#>  4  21.4 6      258    110  3.08  3.22  19.4 1     0     3     1    
#>  5  18.7 8      360    175  3.15  3.44  17.0 0     0     3     2    
#>  6  18.1 6      225    105  2.76  3.46  20.2 1     0     3     1    
#>  7  14.3 8      360    245  3.21  3.57  15.8 0     0     3     4    
#>  8  24.4 4      147.    62  3.69  3.19  20   1     0     4     2    
#>  9  22.8 4      141.    95  3.92  3.15  22.9 1     0     4     2    
#> 10  19.2 6      168.   123  3.92  3.44  18.3 1     0     4     4    
#> # ℹ 22 more rows
mtcars |>
  numchar2fct() |>
  dplyr::mutate(vs = fct_drop(vs))
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#> Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
#> Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
#> Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
#> Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
#> Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
#> Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
#> Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
#> Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
#> Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
#> Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
#> Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
#> Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
#> Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
#> Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
#> Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
#> Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
#> Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
#> AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
#> Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
#> Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
#> Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
#> Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
#> Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2