mirror of
https://github.com/agdamsbo/REDCapCAST.git
synced 2024-11-22 05:20:23 +01:00
Compare commits
4 Commits
77afc5650f
...
4c5d58bf82
Author | SHA1 | Date | |
---|---|---|---|
4c5d58bf82 | |||
9d95b438d8 | |||
21e635d775 | |||
f488dde528 |
12
DESCRIPTION
12
DESCRIPTION
@ -1,6 +1,6 @@
|
||||
Package: REDCapCAST
|
||||
Title: REDCap Castellated Data Handling
|
||||
Version: 24.1.1
|
||||
Version: 24.1.2
|
||||
Authors@R: c(
|
||||
person("Andreas Gammelgaard", "Damsbo", email = "agdamsbo@clin.au.dk",
|
||||
role = c("aut", "cre"),comment = c(ORCID = "0000-0002-7559-1154")),
|
||||
@ -27,12 +27,13 @@ Suggests:
|
||||
jsonlite,
|
||||
testthat,
|
||||
Hmisc,
|
||||
readr,
|
||||
knitr,
|
||||
rmarkdown,
|
||||
gt,
|
||||
usethis,
|
||||
ggplot2
|
||||
ggplot2,
|
||||
haven,
|
||||
here
|
||||
License: GPL (>= 3)
|
||||
Encoding: UTF-8
|
||||
LazyData: true
|
||||
@ -45,12 +46,15 @@ Imports:
|
||||
tidyr,
|
||||
tidyselect,
|
||||
keyring,
|
||||
purrr
|
||||
purrr,
|
||||
readr,
|
||||
stats
|
||||
Collate:
|
||||
'utils.r'
|
||||
'process_user_input.r'
|
||||
'REDCap_split.r'
|
||||
'ds2dd.R'
|
||||
'ds2dd_detailed.R'
|
||||
'easy_redcap.R'
|
||||
'read_redcap_tables.R'
|
||||
'redcap_wider.R'
|
||||
|
@ -4,9 +4,11 @@ export(REDCap_split)
|
||||
export(clean_redcap_name)
|
||||
export(d2w)
|
||||
export(ds2dd)
|
||||
export(ds2dd_detailed)
|
||||
export(easy_redcap)
|
||||
export(focused_metadata)
|
||||
export(get_api_key)
|
||||
export(guess_time_only_filter)
|
||||
export(match_fields_to_form)
|
||||
export(read_redcap_tables)
|
||||
export(redcap_wider)
|
||||
@ -21,5 +23,6 @@ importFrom(keyring,key_get)
|
||||
importFrom(keyring,key_list)
|
||||
importFrom(keyring,key_set)
|
||||
importFrom(purrr,reduce)
|
||||
importFrom(readr,parse_time)
|
||||
importFrom(tidyr,pivot_wider)
|
||||
importFrom(tidyselect,all_of)
|
||||
|
12
NEWS.md
12
NEWS.md
@ -1,3 +1,15 @@
|
||||
# REDCapCAST 24.1.2
|
||||
|
||||
### Functions
|
||||
|
||||
* Fix: `ds2dd()`: uses correct default dd column names. Will be deprecated.
|
||||
|
||||
* NEW: `ds2dd_detailed()`: extension of the `ds2dd()`, which serves to preserve as much metadata as possible automatically. Depends on a group of helper functions also introduced. Of special note is the `guess_time_only_filter()`, which will try to guess which columns/variables should be formatted as time only formats. Supports hms time format. DETAILED INSTRUCTION AND VIGNETTE IS PENDING.
|
||||
|
||||
### Other
|
||||
|
||||
I believe `renv` has now been added and runs correctly. After clone, do `renv::restore()` to install all necessary package to modify the package.
|
||||
|
||||
# REDCapCAST 24.1.1
|
||||
|
||||
### Functions
|
||||
|
13
R/ds2dd.R
13
R/ds2dd.R
@ -1,8 +1,13 @@
|
||||
utils::globalVariables(c("redcapcast_meta"))
|
||||
#' Data set to data dictionary function
|
||||
utils::globalVariables(c("metadata_names"))
|
||||
#' (DEPRECATED) Data set to data dictionary function
|
||||
#'
|
||||
#' @description
|
||||
#' Creates a very basic data dictionary skeleton. Please see `ds2dd_detailed()`
|
||||
#' for a more advanced function.
|
||||
#'
|
||||
#' @details
|
||||
#' Migrated from stRoke ds2dd(). Fits better with the functionality of
|
||||
#' 'REDCapCAST'
|
||||
#' 'REDCapCAST'.
|
||||
#' @param ds data set
|
||||
#' @param record.id name or column number of id variable, moved to first row of
|
||||
#' data dictionary, character of integer. Default is "record_id".
|
||||
@ -16,7 +21,7 @@ utils::globalVariables(c("redcapcast_meta"))
|
||||
#' @param include.column.names Flag to give detailed output including new
|
||||
#' column names for original data set for upload.
|
||||
#' @param metadata Metadata column names. Default is the included
|
||||
#' REDCapCAST::redcapcast_data.
|
||||
#' REDCapCAST::metadata_names.
|
||||
#'
|
||||
#' @return data.frame or list of data.frame and vector
|
||||
#' @export
|
||||
|
343
R/ds2dd_detailed.R
Normal file
343
R/ds2dd_detailed.R
Normal file
@ -0,0 +1,343 @@
|
||||
utils::globalVariables(c( "stats::setNames", "field_name", "field_type", "select_choices_or_calculations"))
|
||||
#' Try at determining which are true time only variables
|
||||
#'
|
||||
#' @description
|
||||
#' This is just a try at guessing data type based on data class and column names
|
||||
#' hoping for a tiny bit of naming consistency. R does not include a time-only
|
||||
#' data format natively, so the "hms" class from `readr` is used. This
|
||||
#' has to be converted to character class before REDCap upload.
|
||||
#'
|
||||
#' @param data data set
|
||||
#' @param validate flag to output validation data. Will output list.
|
||||
#' @param sel.pos Positive selection regex string
|
||||
#' @param sel.neg Negative selection regex string
|
||||
#'
|
||||
#' @return character vector or list depending on `validate` flag.
|
||||
#' @export
|
||||
#'
|
||||
#' @examples
|
||||
#' data <- redcapcast_data
|
||||
#' data |> guess_time_only_filter()
|
||||
#' data |> guess_time_only_filter(validate = TRUE) |> lapply(head)
|
||||
guess_time_only_filter <- function(data, validate = FALSE, sel.pos = "[Tt]i[d(me)]", sel.neg = "[Dd]at[eo]") {
|
||||
datetime_nms <- data |>
|
||||
lapply(\(x)any(c("POSIXct","hms") %in% class(x))) |>
|
||||
(\(x) names(data)[do.call(c, x)])()
|
||||
|
||||
time_only_log <- datetime_nms |> (\(x) {
|
||||
## Detects which are determined true Time only variables
|
||||
## Inspection is necessary
|
||||
grepl(pattern = sel.pos, x = x) &
|
||||
!grepl(pattern = sel.neg, x = x)
|
||||
})()
|
||||
|
||||
if (validate) {
|
||||
list(
|
||||
"is.POSIX" = data[datetime_nms],
|
||||
"is.datetime" = data[datetime_nms[!time_only_log]],
|
||||
"is.time_only" = data[datetime_nms[time_only_log]]
|
||||
)
|
||||
} else {
|
||||
datetime_nms[time_only_log]
|
||||
}
|
||||
}
|
||||
|
||||
#' Correction based on time_only_filter function. Introduces new class for easier
|
||||
#' validation labelling.
|
||||
#'
|
||||
#' @description
|
||||
#' Dependens on the data class "hms" introduced with
|
||||
#' `guess_time_only_filter()` and converts these
|
||||
#'
|
||||
#' @param data data set
|
||||
#' @param ... arguments passed on to `guess_time_only_filter()`
|
||||
#'
|
||||
#' @return tibble
|
||||
#' @importFrom readr parse_time
|
||||
#'
|
||||
#' @examples
|
||||
#' data <- redcapcast_data
|
||||
#' ## data |> time_only_correction()
|
||||
time_only_correction <- function(data, ...) {
|
||||
nms <- guess_time_only_filter(data, ...)
|
||||
z <- nms |>
|
||||
lapply(\(y) {
|
||||
readr::parse_time(format(data[[y]], format = "%H:%M:%S"))
|
||||
}) |>
|
||||
suppressMessages(dplyr::bind_cols()) |>
|
||||
stats::setNames(nm = nms)
|
||||
data[nms] <- z
|
||||
data
|
||||
}
|
||||
|
||||
#' Change "hms" to "character" for REDCap upload.
|
||||
#'
|
||||
#' @param data data set
|
||||
#'
|
||||
#' @return data.frame or tibble
|
||||
#'
|
||||
#' @examples
|
||||
#' data <- redcapcast_data
|
||||
#' ## data |> time_only_correction() |> hms2character()
|
||||
hms2character <- function(data) {
|
||||
data |>
|
||||
lapply(function(x) {
|
||||
if ("hms" %in% class(x)) {
|
||||
as.character(x)
|
||||
} else {
|
||||
x
|
||||
}
|
||||
}) |>
|
||||
dplyr::bind_cols()
|
||||
}
|
||||
|
||||
#' Extract data from stata file for data dictionary
|
||||
#'
|
||||
#' @details
|
||||
#' This function is a natural development of the ds2dd() function. It assumes
|
||||
#' that the first column is the ID-column. No checks.
|
||||
#' Please, do always inspect the data dictionary before upload.
|
||||
#'
|
||||
#' Ensure, that the data set is formatted with as much information as possible.
|
||||
#'
|
||||
#' `field.type` can be supplied
|
||||
#'
|
||||
#' @param data data frame
|
||||
#' @param date.format date format, character string. ymd/dmy/mdy. dafault is
|
||||
#' dmy.
|
||||
#' @param add.auto.id flag to add id column
|
||||
#' @param form.name manually specify form name(s). Vector of length 1 or
|
||||
#' ncol(data). Default is NULL and "data" is used.
|
||||
#' @param field.type manually specify field type(s). Vector of length 1 or
|
||||
#' ncol(data). Default is NULL and "text" is used for everything but factors,
|
||||
#' which wil get "radio".
|
||||
#' @param field.label manually specify field label(s). Vector of length 1 or
|
||||
#' ncol(data). Default is NULL and colnames(data) is used or attribute
|
||||
#' `field.label.attr` for haven_labelled data set (imported .dta file with
|
||||
#' `haven::read_dta()`).
|
||||
#' @param field.label.attr attribute name for named labels for haven_labelled
|
||||
#' data set (imported .dta file with `haven::read_dta()`. Default is "label"
|
||||
#' @param field.validation manually specify field validation(s). Vector of
|
||||
#' length 1 or ncol(data). Default is NULL and `levels()` are used for factors
|
||||
#' or attribute `factor.labels.attr` for haven_labelled data set (imported .dta file with
|
||||
#' `haven::read_dta()`).
|
||||
#' @param metadata redcap metadata headings. Default is
|
||||
#' REDCapCAST:::metadata_names.
|
||||
#' @param validate.time Flag to validate guessed time columns
|
||||
#' @param time.var.sel.pos Positive selection regex string passed to
|
||||
#' `gues_time_only_filter()` as sel.pos.
|
||||
#' @param time.var.sel.neg Negative selection regex string passed to
|
||||
#' `gues_time_only_filter()` as sel.neg.
|
||||
#'
|
||||
#' @return list of length 2
|
||||
#' @export
|
||||
#'
|
||||
#' @examples
|
||||
#' data <- redcapcast_data
|
||||
#' data |> ds2dd_detailed(validate.time = TRUE)
|
||||
#' data |> ds2dd_detailed()
|
||||
#' iris |> ds2dd_detailed(add.auto.id = TRUE)
|
||||
#' mtcars |> ds2dd_detailed(add.auto.id = TRUE)
|
||||
ds2dd_detailed <- function(data,
|
||||
add.auto.id = FALSE,
|
||||
date.format = "dmy",
|
||||
form.name = NULL,
|
||||
field.type = NULL,
|
||||
field.label = NULL,
|
||||
field.label.attr ="label",
|
||||
field.validation = NULL,
|
||||
metadata = metadata_names,
|
||||
validate.time = FALSE,
|
||||
time.var.sel.pos = "[Tt]i[d(me)]",
|
||||
time.var.sel.neg = "[Dd]at[eo]") {
|
||||
## Handles the odd case of no id column present
|
||||
if (add.auto.id) {
|
||||
data <- dplyr::tibble(
|
||||
default_trial_id = seq_len(nrow(data)),
|
||||
data
|
||||
)
|
||||
message("A default id column has been added")
|
||||
}
|
||||
|
||||
if (validate.time) {
|
||||
return(data |> guess_time_only_filter(validate = TRUE))
|
||||
}
|
||||
|
||||
if (lapply(data, haven::is.labelled) |> (\(x)do.call(c, x))() |> any()) {
|
||||
message("Data seems to be imported with haven from a Stata (.dta) file and will be treated as such.")
|
||||
data.source <- "dta"
|
||||
} else {
|
||||
data.source <- ""
|
||||
}
|
||||
|
||||
## data classes
|
||||
|
||||
### Only keeps the first class, as time fields (POSIXct/POSIXt) has two classes
|
||||
if (data.source == "dta") {
|
||||
data_classes <-
|
||||
data |>
|
||||
haven::as_factor() |>
|
||||
time_only_correction(sel.pos = time.var.sel.pos, sel.neg = time.var.sel.neg) |>
|
||||
lapply(\(x)class(x)[1]) |>
|
||||
(\(x)do.call(c, x))()
|
||||
} else {
|
||||
data_classes <-
|
||||
data |>
|
||||
time_only_correction(sel.pos = time.var.sel.pos, sel.neg = time.var.sel.neg) |>
|
||||
lapply(\(x)class(x)[1]) |>
|
||||
(\(x)do.call(c, x))()
|
||||
}
|
||||
|
||||
## ---------------------------------------
|
||||
## Building the data dictionary
|
||||
## ---------------------------------------
|
||||
|
||||
## skeleton
|
||||
|
||||
dd <- data.frame(matrix(ncol = length(metadata), nrow = ncol(data))) |>
|
||||
stats::setNames(metadata) |>
|
||||
dplyr::tibble()
|
||||
|
||||
dd$field_name <- gsub(" ", "_", tolower(colnames(data)))
|
||||
|
||||
## form_name
|
||||
if (is.null(form.name)) {
|
||||
dd$form_name <- "data"
|
||||
} else {
|
||||
if (length(form.name) == 1 | length(form.name) == nrow(dd)) {
|
||||
dd$form_name <- form.name
|
||||
} else {
|
||||
stop("Length of supplied 'form.name' has to be one (1) or ncol(data).")
|
||||
}
|
||||
}
|
||||
|
||||
## field_label
|
||||
|
||||
if (is.null(field.label)) {
|
||||
if (data.source == "dta") {
|
||||
label <- data |>
|
||||
lapply(function(x) {
|
||||
if (haven::is.labelled(x)) {
|
||||
attributes(x)[[field.label.attr]]
|
||||
} else {
|
||||
NA
|
||||
}
|
||||
}) |>
|
||||
(\(x)do.call(c, x))()
|
||||
} else {
|
||||
label <- data |> colnames()
|
||||
}
|
||||
|
||||
dd <-
|
||||
dd |> dplyr::mutate(field_label = dplyr::if_else(is.na(label), field_name, label))
|
||||
} else {
|
||||
if (length(field.label) == 1 | length(field.label) == nrow(dd)) {
|
||||
dd$field_label <- field.label
|
||||
} else {
|
||||
stop("Length of supplied 'field.label' has to be one (1) or ncol(data).")
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
## field_type
|
||||
|
||||
if (is.null(field.type)) {
|
||||
dd$field_type <- "text"
|
||||
|
||||
dd <-
|
||||
dd |> dplyr::mutate(field_type = dplyr::if_else(data_classes == "factor", "radio", field_type))
|
||||
} else {
|
||||
if (length(field.type) == 1 | length(field.type) == nrow(dd)) {
|
||||
dd$field_type <- field.type
|
||||
} else {
|
||||
stop("Length of supplied 'field.type' has to be one (1) or ncol(data).")
|
||||
}
|
||||
}
|
||||
|
||||
## validation
|
||||
|
||||
if (is.null(field.validation)) {
|
||||
dd <-
|
||||
dd |> dplyr::mutate(
|
||||
text_validation_type_or_show_slider_number = dplyr::case_when(
|
||||
data_classes == "Date" ~ paste0("date_", date.format),
|
||||
data_classes ==
|
||||
"hms" ~ "time_hh_mm_ss",
|
||||
## Self invented format after filtering
|
||||
data_classes ==
|
||||
"POSIXct" ~ paste0("datetime_", date.format),
|
||||
data_classes ==
|
||||
"numeric" ~ "number"
|
||||
)
|
||||
)
|
||||
} else {
|
||||
if (length(field.validation) == 1 | length(field.validation) == nrow(dd)) {
|
||||
dd$text_validation_type_or_show_slider_number <- field.validation
|
||||
} else {
|
||||
stop("Length of supplied 'field.validation' has to be one (1) or ncol(data).")
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
## choices
|
||||
|
||||
if (data.source == "dta") {
|
||||
factor_levels <- data |>
|
||||
lapply(function(x) {
|
||||
if (haven::is.labelled(x)) {
|
||||
att <- attributes(x)$labels
|
||||
paste(paste(att, names(att), sep = ", "), collapse = " | ")
|
||||
} else {
|
||||
NA
|
||||
}
|
||||
}) |>
|
||||
(\(x)do.call(c, x))()
|
||||
} else {
|
||||
factor_levels <- data |>
|
||||
lapply(function(x) {
|
||||
if (is.factor(x)) {
|
||||
## Re-factors to avoid confusion with missing levels
|
||||
## Assumes alle relevant levels are represented in the data
|
||||
re_fac <- factor(x)
|
||||
paste(paste(unique(as.numeric(re_fac)), levels(re_fac), sep = ", "), collapse = " | ")
|
||||
} else {
|
||||
NA
|
||||
}
|
||||
}) |>
|
||||
(\(x)do.call(c, x))()
|
||||
}
|
||||
|
||||
dd <-
|
||||
dd |> dplyr::mutate(
|
||||
select_choices_or_calculations = dplyr::if_else(
|
||||
is.na(factor_levels),
|
||||
select_choices_or_calculations,
|
||||
factor_levels
|
||||
)
|
||||
)
|
||||
|
||||
list(
|
||||
data = data |>
|
||||
time_only_correction(sel.pos = time.var.sel.pos, sel.neg = time.var.sel.neg) |>
|
||||
hms2character() |>
|
||||
(\(x)stats::setNames(x, tolower(names(x))))(),
|
||||
meta = dd
|
||||
)
|
||||
}
|
||||
|
||||
### Completion
|
||||
#' Completion marking based on completed upload
|
||||
#'
|
||||
#' @param upload output list from `REDCapR::redcap_write()`
|
||||
#' @param ls output list from `ds2dd_detailed()`
|
||||
#'
|
||||
#' @return list with `REDCapR::redcap_write()` results
|
||||
mark_complete <- function(upload, ls){
|
||||
data <- ls$data
|
||||
meta <- ls$meta
|
||||
forms <- unique(meta$form_name)
|
||||
cbind(data[[1]][data[[1]] %in% upload$affected_ids],
|
||||
data.frame(matrix(2,ncol=length(forms),nrow=upload$records_affected_count))) |>
|
||||
stats::setNames(c(names(data)[1],paste0(forms,"_complete")))
|
||||
}
|
@ -10,8 +10,9 @@
|
||||
#' \item{redcap_repeat_instrument}{Repeat instrument, character}
|
||||
#' \item{redcap_repeat_instance}{Repeat instance, numeric}
|
||||
#' \item{cpr}{CPR number, character}
|
||||
#' \item{inclusion}{Inclusion date, date}
|
||||
#' \item{dob}{Date of birth, date}
|
||||
#' \item{inclusion}{Inclusion date, Date}
|
||||
#' \item{inclusion_time}{Inclusion time, hms}
|
||||
#' \item{dob}{Date of birth, Date}
|
||||
#' \item{age}{Age decimal, numeric}
|
||||
#' \item{age_integer}{Age integer, numeric}
|
||||
#' \item{sex}{Legal sex, character}
|
||||
@ -21,10 +22,10 @@
|
||||
#' \item{region}{region, character}
|
||||
#' \item{baseline_data_start_complete}{Completed, character}
|
||||
#' \item{mrs_assessed}{mRS Assessed, character}
|
||||
#' \item{mrs_date}{Assesment date, date}
|
||||
#' \item{mrs_score}{Score, numeric}
|
||||
#' \item{mrs_date}{Assesment date, Date}
|
||||
#' \item{mrs_score}{Categorical score, numeric}
|
||||
#' \item{mrs_complete}{Complete, numeric}
|
||||
#' \item{event_date}{Event date, date}
|
||||
#' \item{event_datetime}{Event datetime, POSIXct}
|
||||
#' \item{event_type}{Event type, character}
|
||||
#' \item{new_event_complete}{Completed, character}
|
||||
#'
|
||||
|
Binary file not shown.
12
man/ds2dd.Rd
12
man/ds2dd.Rd
@ -2,7 +2,7 @@
|
||||
% Please edit documentation in R/ds2dd.R
|
||||
\name{ds2dd}
|
||||
\alias{ds2dd}
|
||||
\title{Data set to data dictionary function}
|
||||
\title{(DEPRECATED) Data set to data dictionary function}
|
||||
\usage{
|
||||
ds2dd(
|
||||
ds,
|
||||
@ -11,7 +11,7 @@ ds2dd(
|
||||
field.type = "text",
|
||||
field.label = NULL,
|
||||
include.column.names = FALSE,
|
||||
metadata = names(redcapcast_meta)
|
||||
metadata = metadata_names
|
||||
)
|
||||
}
|
||||
\arguments{
|
||||
@ -34,14 +34,18 @@ names.}
|
||||
column names for original data set for upload.}
|
||||
|
||||
\item{metadata}{Metadata column names. Default is the included
|
||||
REDCapCAST::redcapcast_data.}
|
||||
REDCapCAST::metadata_names.}
|
||||
}
|
||||
\value{
|
||||
data.frame or list of data.frame and vector
|
||||
}
|
||||
\description{
|
||||
Creates a very basic data dictionary skeleton. Please see `ds2dd_detailed()`
|
||||
for a more advanced function.
|
||||
}
|
||||
\details{
|
||||
Migrated from stRoke ds2dd(). Fits better with the functionality of
|
||||
'REDCapCAST'
|
||||
'REDCapCAST'.
|
||||
}
|
||||
\examples{
|
||||
redcapcast_data$record_id <- seq_len(nrow(redcapcast_data))
|
||||
|
82
man/ds2dd_detailed.Rd
Normal file
82
man/ds2dd_detailed.Rd
Normal file
@ -0,0 +1,82 @@
|
||||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/ds2dd_detailed.R
|
||||
\name{ds2dd_detailed}
|
||||
\alias{ds2dd_detailed}
|
||||
\title{Extract data from stata file for data dictionary}
|
||||
\usage{
|
||||
ds2dd_detailed(
|
||||
data,
|
||||
add.auto.id = FALSE,
|
||||
date.format = "dmy",
|
||||
form.name = NULL,
|
||||
field.type = NULL,
|
||||
field.label = NULL,
|
||||
field.label.attr = "label",
|
||||
field.validation = NULL,
|
||||
metadata = metadata_names,
|
||||
validate.time = FALSE,
|
||||
time.var.sel.pos = "[Tt]i[d(me)]",
|
||||
time.var.sel.neg = "[Dd]at[eo]"
|
||||
)
|
||||
}
|
||||
\arguments{
|
||||
\item{data}{data frame}
|
||||
|
||||
\item{add.auto.id}{flag to add id column}
|
||||
|
||||
\item{date.format}{date format, character string. ymd/dmy/mdy. dafault is
|
||||
dmy.}
|
||||
|
||||
\item{form.name}{manually specify form name(s). Vector of length 1 or
|
||||
ncol(data). Default is NULL and "data" is used.}
|
||||
|
||||
\item{field.type}{manually specify field type(s). Vector of length 1 or
|
||||
ncol(data). Default is NULL and "text" is used for everything but factors,
|
||||
which wil get "radio".}
|
||||
|
||||
\item{field.label}{manually specify field label(s). Vector of length 1 or
|
||||
ncol(data). Default is NULL and colnames(data) is used or attribute
|
||||
`field.label.attr` for haven_labelled data set (imported .dta file with
|
||||
`haven::read_dta()`).}
|
||||
|
||||
\item{field.label.attr}{attribute name for named labels for haven_labelled
|
||||
data set (imported .dta file with `haven::read_dta()`. Default is "label"}
|
||||
|
||||
\item{field.validation}{manually specify field validation(s). Vector of
|
||||
length 1 or ncol(data). Default is NULL and `levels()` are used for factors
|
||||
or attribute `factor.labels.attr` for haven_labelled data set (imported .dta file with
|
||||
`haven::read_dta()`).}
|
||||
|
||||
\item{metadata}{redcap metadata headings. Default is
|
||||
REDCapCAST:::metadata_names.}
|
||||
|
||||
\item{validate.time}{Flag to validate guessed time columns}
|
||||
|
||||
\item{time.var.sel.pos}{Positive selection regex string passed to
|
||||
`gues_time_only_filter()` as sel.pos.}
|
||||
|
||||
\item{time.var.sel.neg}{Negative selection regex string passed to
|
||||
`gues_time_only_filter()` as sel.neg.}
|
||||
}
|
||||
\value{
|
||||
list of length 2
|
||||
}
|
||||
\description{
|
||||
Extract data from stata file for data dictionary
|
||||
}
|
||||
\details{
|
||||
This function is a natural development of the ds2dd() function. It assumes
|
||||
that the first column is the ID-column. No checks.
|
||||
Please, do always inspect the data dictionary before upload.
|
||||
|
||||
Ensure, that the data set is formatted with as much information as possible.
|
||||
|
||||
`field.type` can be supplied
|
||||
}
|
||||
\examples{
|
||||
data <- redcapcast_data
|
||||
data |> ds2dd_detailed(validate.time = TRUE)
|
||||
data |> ds2dd_detailed()
|
||||
iris |> ds2dd_detailed(add.auto.id = TRUE)
|
||||
mtcars |> ds2dd_detailed(add.auto.id = TRUE)
|
||||
}
|
36
man/guess_time_only_filter.Rd
Normal file
36
man/guess_time_only_filter.Rd
Normal file
@ -0,0 +1,36 @@
|
||||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/ds2dd_detailed.R
|
||||
\name{guess_time_only_filter}
|
||||
\alias{guess_time_only_filter}
|
||||
\title{Try at determining which are true time only variables}
|
||||
\usage{
|
||||
guess_time_only_filter(
|
||||
data,
|
||||
validate = FALSE,
|
||||
sel.pos = "[Tt]i[d(me)]",
|
||||
sel.neg = "[Dd]at[eo]"
|
||||
)
|
||||
}
|
||||
\arguments{
|
||||
\item{data}{data set}
|
||||
|
||||
\item{validate}{flag to output validation data. Will output list.}
|
||||
|
||||
\item{sel.pos}{Positive selection regex string}
|
||||
|
||||
\item{sel.neg}{Negative selection regex string}
|
||||
}
|
||||
\value{
|
||||
character vector or list depending on `validate` flag.
|
||||
}
|
||||
\description{
|
||||
This is just a try at guessing data type based on data class and column names
|
||||
hoping for a tiny bit of naming consistency. R does not include a time-only
|
||||
data format natively, so the "hms" class from `readr` is used. This
|
||||
has to be converted to character class before REDCap upload.
|
||||
}
|
||||
\examples{
|
||||
data <- redcapcast_data
|
||||
data |> guess_time_only_filter()
|
||||
data |> guess_time_only_filter(validate = TRUE) |> lapply(head)
|
||||
}
|
21
man/hms2character.Rd
Normal file
21
man/hms2character.Rd
Normal file
@ -0,0 +1,21 @@
|
||||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/ds2dd_detailed.R
|
||||
\name{hms2character}
|
||||
\alias{hms2character}
|
||||
\title{Change "hms" to "character" for REDCap upload.}
|
||||
\usage{
|
||||
hms2character(data)
|
||||
}
|
||||
\arguments{
|
||||
\item{data}{data set}
|
||||
}
|
||||
\value{
|
||||
data.frame or tibble
|
||||
}
|
||||
\description{
|
||||
Change "hms" to "character" for REDCap upload.
|
||||
}
|
||||
\examples{
|
||||
data <- redcapcast_data
|
||||
## data |> time_only_correction() |> hms2character()
|
||||
}
|
19
man/mark_complete.Rd
Normal file
19
man/mark_complete.Rd
Normal file
@ -0,0 +1,19 @@
|
||||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/ds2dd_detailed.R
|
||||
\name{mark_complete}
|
||||
\alias{mark_complete}
|
||||
\title{Completion marking based on completed upload}
|
||||
\usage{
|
||||
mark_complete(upload, ls)
|
||||
}
|
||||
\arguments{
|
||||
\item{upload}{output list from `REDCapR::redcap_write()`}
|
||||
|
||||
\item{ls}{output list from `ds2dd_detailed()`}
|
||||
}
|
||||
\value{
|
||||
list with `REDCapR::redcap_write()` results
|
||||
}
|
||||
\description{
|
||||
Completion marking based on completed upload
|
||||
}
|
@ -12,8 +12,9 @@ A data frame with 22 variables:
|
||||
\item{redcap_repeat_instrument}{Repeat instrument, character}
|
||||
\item{redcap_repeat_instance}{Repeat instance, numeric}
|
||||
\item{cpr}{CPR number, character}
|
||||
\item{inclusion}{Inclusion date, date}
|
||||
\item{dob}{Date of birth, date}
|
||||
\item{inclusion}{Inclusion date, Date}
|
||||
\item{inclusion_time}{Inclusion time, hms}
|
||||
\item{dob}{Date of birth, Date}
|
||||
\item{age}{Age decimal, numeric}
|
||||
\item{age_integer}{Age integer, numeric}
|
||||
\item{sex}{Legal sex, character}
|
||||
@ -23,10 +24,10 @@ A data frame with 22 variables:
|
||||
\item{region}{region, character}
|
||||
\item{baseline_data_start_complete}{Completed, character}
|
||||
\item{mrs_assessed}{mRS Assessed, character}
|
||||
\item{mrs_date}{Assesment date, date}
|
||||
\item{mrs_score}{Score, numeric}
|
||||
\item{mrs_date}{Assesment date, Date}
|
||||
\item{mrs_score}{Categorical score, numeric}
|
||||
\item{mrs_complete}{Complete, numeric}
|
||||
\item{event_date}{Event date, date}
|
||||
\item{event_datetime}{Event datetime, POSIXct}
|
||||
\item{event_type}{Event type, character}
|
||||
\item{new_event_complete}{Completed, character}
|
||||
|
||||
|
25
man/time_only_correction.Rd
Normal file
25
man/time_only_correction.Rd
Normal file
@ -0,0 +1,25 @@
|
||||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/ds2dd_detailed.R
|
||||
\name{time_only_correction}
|
||||
\alias{time_only_correction}
|
||||
\title{Correction based on time_only_filter function. Introduces new class for easier
|
||||
validation labelling.}
|
||||
\usage{
|
||||
time_only_correction(data, ...)
|
||||
}
|
||||
\arguments{
|
||||
\item{data}{data set}
|
||||
|
||||
\item{...}{arguments passed on to `guess_time_only_filter()`}
|
||||
}
|
||||
\value{
|
||||
tibble
|
||||
}
|
||||
\description{
|
||||
Dependens on the data class "hms" introduced with
|
||||
`guess_time_only_filter()` and converts these
|
||||
}
|
||||
\examples{
|
||||
data <- redcapcast_data
|
||||
## data |> time_only_correction()
|
||||
}
|
Loading…
Reference in New Issue
Block a user