Compare commits

...

11 Commits

20 changed files with 390 additions and 237 deletions

View File

@ -20,7 +20,6 @@ export(strsplitx)
importFrom(REDCapR,redcap_event_instruments)
importFrom(REDCapR,redcap_metadata_read)
importFrom(REDCapR,redcap_read)
importFrom(dplyr,left_join)
importFrom(keyring,key_get)
importFrom(keyring,key_list)
importFrom(keyring,key_set)

View File

@ -4,7 +4,9 @@
* Fix: `ds2dd()`: uses correct default dd column names. Will be deprecated.
* Fix: `easy_redcap()`: fixed to actually allow project naming. also specifically asks for uri.
* Fix: `easy_redcap()`: fixed to actually allow project naming. also specifically asks for uri. widening updated to work.
* Fix: `redcap_wider()`: updated to accept more formats and allow handling of simple projects without repeating instruments and not longitudinal.
* Fix: `read_redcap_tables()`: now handles non-longitudinal project without repeatable instruments.

View File

@ -92,13 +92,13 @@ REDCap_split <- function(records,
metadata <-
as.data.frame(process_user_input(metadata))
# Process repeat instrument names to match the redcap naming
records$redcap_repeat_instrument <- clean_redcap_name(records$redcap_repeat_instrument)
# Get the variable names in the dataset
vars_in_data <- names(records)
# Process repeat instrument names to match the redcap naming
if (is.repeated_longitudinal(records)){
records$redcap_repeat_instrument <- clean_redcap_name(records$redcap_repeat_instrument)
# Match arg for forms
forms <- match.arg(forms, c("repeating", "all"))
@ -116,6 +116,7 @@ REDCap_split <- function(records,
as.character(records$redcap_repeat_instrument)
)
}
}
# Standardize variable names for metadata
# names(metadata) <- metadata_names
@ -138,6 +139,8 @@ REDCap_split <- function(records,
)
)
if ("redcap_repeat_instrument" %in% vars_in_data) {
# Variables to be at the beginning of each repeating instrument
repeat_instrument_fields <- grep("^redcap_repeat.*",
@ -196,5 +199,5 @@ REDCap_split <- function(records,
}
out
}

View File

@ -10,7 +10,7 @@ get_api_key <- function(key.name) {
if (key.name %in% keyring::key_list()$service) {
keyring::key_get(service = key.name)
} else {
keyring::key_set(service = key.name, prompt = "Write REDCap API key:")
keyring::key_set(service = key.name, prompt = "Provide REDCap API key:")
keyring::key_get(service = key.name)
}
}
@ -19,40 +19,24 @@ get_api_key <- function(key.name) {
#' Secure API key storage and data acquisition in one
#'
#' @param project.name The name of the current project (for key storage with
#' `keyring::key_set()`)
#' `keyring::key_set()`, using the default keyring)
#' @param widen.data argument to widen the exported data
#' @param uri REDCap database API uri
#' @param ... arguments passed on to `REDCapCAST::read_redcap_tables()`
#'
#' @return data.frame or list depending on widen.data
#' @importFrom purrr reduce
#' @importFrom dplyr left_join
#' @export
easy_redcap <- function(project.name, widen.data = TRUE, uri, ...) {
easy_redcap <- function(project.name, widen.data=TRUE, uri, ...) {
key <- get_api_key(key.name = paste0(project.name, "_REDCAP_API"))
out <- read_redcap_tables(
token = key,
uri = uri,
token = key,
...
)
all_names <- out |>
lapply(names) |>
Reduce(c, x = _) |>
unique()
if (widen.data) {
if (!any(c("redcap_event_name", "redcap_repeat_instrument") %in%
all_names)) {
if (length(out) == 1) {
out <- out[[1]]
} else {
out <- out |> purrr::reduce(dplyr::left_join)
}
} else {
out <- out |> redcap_wider()
}
if (widen.data){
out <- out |> redcap_wider()
}
out

View File

@ -31,47 +31,40 @@ read_redcap_tables <- function(uri,
events = NULL,
forms = NULL,
raw_or_label = "label",
split_forms = "all",
generics = c(
"redcap_event_name",
"redcap_repeat_instrument",
"redcap_repeat_instance"
)) {
split_forms = "all") {
# Getting metadata
m <-
REDCapR::redcap_metadata_read (redcap_uri = uri, token = token)[["data"]]
if (!is.null(fields)){
REDCapR::redcap_metadata_read(redcap_uri = uri, token = token)[["data"]]
if (!is.null(fields)) {
fields_test <- fields %in% unique(m$field_name)
if (any(!fields_test)){
print(paste0("The following field names are invalid: ", paste(fields[!fields_test],collapse=", "),"."))
if (any(!fields_test)) {
print(paste0("The following field names are invalid: ", paste(fields[!fields_test], collapse = ", "), "."))
stop("Not all supplied field names are valid")
}
}
if (!is.null(forms)){
if (!is.null(forms)) {
forms_test <- forms %in% unique(m$form_name)
if (any(!forms_test)){
print(paste0("The following form names are invalid: ", paste(forms[!forms_test],collapse=", "),"."))
if (any(!forms_test)) {
print(paste0("The following form names are invalid: ", paste(forms[!forms_test], collapse = ", "), "."))
stop("Not all supplied form names are valid")
}
}
if (!is.null(events)){
arm_event_inst <- REDCapR::redcap_event_instruments(redcap_uri = uri,
token = token)
if (!is.null(events)) {
arm_event_inst <- REDCapR::redcap_event_instruments(
redcap_uri = uri,
token = token
)
event_test <- events %in% unique(arm_event_inst$data$unique_event_name)
if (any(!event_test)){
print(paste0("The following event names are invalid: ", paste(events[!event_test],collapse=", "),"."))
if (any(!event_test)) {
print(paste0("The following event names are invalid: ", paste(events[!event_test], collapse = ", "), "."))
stop("Not all supplied event names are valid")
}
}
@ -95,28 +88,17 @@ read_redcap_tables <- function(uri,
}
# Processing metadata to reflect focused dataset
if (!is.null(c(fields,forms,events))){
m <- focused_metadata(m,names(d))
}
m <- focused_metadata(m, names(d))
# Splitting
out <- REDCap_split(d,
m,
forms = split_forms,
primary_table_name = ""
)
if (any(generics %in% names(d))){
# Splitting
l <- REDCap_split(d,
m,
forms = split_forms,
primary_table_name = "")
# Sanitizing split list by removing completely empty rows apart from colnames
# in "generics"
sanitize_split(l,c(names(d)[1],generics))
} else {
# If none of generics are present, the data base is not longitudinal,
# and does not have repeatable events, and therefore splitting does not
# make sense. But now we handle that as well.
d
}
sanitize_split(out)
}

View File

@ -5,40 +5,70 @@ utils::globalVariables(c("redcap_wider",
#' @title Redcap Wider
#' @description Converts a list of REDCap data frames from long to wide format.
#' Handles longitudinal projects, but not yet repeated instruments.
#' @param list A list of data frames.
#' @param data A list of data frames.
#' @param event.glue A dplyr::glue string for repeated events naming
#' @param inst.glue A dplyr::glue string for repeated instruments naming
#' @return The list of data frames in wide format.
#' @export
#' @importFrom tidyr pivot_wider
#' @importFrom tidyselect all_of
#' @importFrom purrr reduce
#'
#' @examples
#' list <- list(data.frame(record_id = c(1,2,1,2),
#' # Longitudinal
#' list1 <- list(data.frame(record_id = c(1,2,1,2),
#' redcap_event_name = c("baseline", "baseline", "followup", "followup"),
#' age = c(25,26,27,28)),
#' data.frame(record_id = c(1,2),
#' redcap_event_name = c("baseline", "baseline"),
#' gender = c("male", "female")))
#' redcap_wider(list)
#' redcap_wider(list1)
#' # Simpel with two instruments
#' list2 <- list(data.frame(record_id = c(1,2),
#' age = c(25,26)),
#' data.frame(record_id = c(1,2),
#' gender = c("male", "female")))
#' redcap_wider(list2)
#' # Simple with single instrument
#' list3 <- list(data.frame(record_id = c(1,2),
#' age = c(25,26)))
#' redcap_wider(list3)
#' # Longitudinal with repeatable instruments
#' list4 <- list(data.frame(record_id = c(1,2,1,2),
#' redcap_event_name = c("baseline", "baseline", "followup", "followup"),
#' age = c(25,26,27,28)),
#' data.frame(record_id = c(1,1,1,1,2,2,2,2),
#' redcap_event_name = c("baseline", "baseline", "followup", "followup",
#' "baseline", "baseline", "followup", "followup"),
#' redcap_repeat_instrument = "walk",
#' redcap_repeat_instance=c(1,2,1,2,1,2,1,2),
#' dist = c(40, 32, 25, 33, 28, 24, 23, 36)),
#' data.frame(record_id = c(1,2),
#' redcap_event_name = c("baseline", "baseline"),
#' gender = c("male", "female")))
#'redcap_wider(list4)
redcap_wider <-
function(list,
function(data,
event.glue = "{.value}_{redcap_event_name}",
inst.glue = "{.value}_{redcap_repeat_instance}") {
all_names <- unique(do.call(c, lapply(list, names)))
if (!any(c("redcap_event_name", "redcap_repeat_instrument") %in%
all_names)) {
stop(
"The dataset does not include a 'redcap_event_name' variable.
redcap_wider only handles projects with repeating instruments or
longitudinal projects"
)
}
if (!is.repeated_longitudinal(data)) {
if (is.list(data)) {
if (length(data) == 1) {
out <- data[[1]]
} else {
out <- data |> purrr::reduce(dplyr::left_join)
}
} else if (is.data.frame(data)){
out <- data
}
id.name <- all_names[1]
l <- lapply(list, function(i) {
} else {
id.name <- do.call(c, lapply(data, names))[[1]]
l <- lapply(data, function(i) {
rep_inst <- "redcap_repeat_instrument" %in% names(i)
if (rep_inst) {
@ -81,13 +111,17 @@ redcap_wider <-
names_glue = event.glue
)
s[colnames(s) != "redcap_event_name"]
} else
(i[colnames(i) != "redcap_event_name"])
} else
(i)
} else {
i[colnames(i) != "redcap_event_name"]
}
} else {
i
}
})
## Additional conditioning is needed to handle repeated instruments.
out <- data.frame(Reduce(f = dplyr::full_join, x = l))
}
data.frame(Reduce(f = dplyr::full_join, x = l))
out
}

327
R/utils.r
View File

@ -1,5 +1,3 @@
#' focused_metadata
#' @description Extracts limited metadata for variables in a dataset
#' @param metadata A dataframe containing metadata
@ -8,7 +6,6 @@
#' @export
#'
focused_metadata <- function(metadata, vars_in_data) {
if (any(c("tbl_df", "tbl") %in% class(metadata))) {
metadata <- data.frame(metadata)
}
@ -17,9 +14,11 @@ focused_metadata <- function(metadata, vars_in_data) {
field_type <- grepl(".*[Ff]ield[._][Tt]ype$", names(metadata))
fields <-
metadata[!metadata[, field_type] %in% c("descriptive", "checkbox") &
metadata[, field_name] %in% vars_in_data,
field_name]
metadata[
!metadata[, field_type] %in% c("descriptive", "checkbox") &
metadata[, field_name] %in% vars_in_data,
field_name
]
# Process checkbox fields
if (any(metadata[, field_type] == "checkbox")) {
@ -29,19 +28,22 @@ focused_metadata <- function(metadata, vars_in_data) {
# Processing
checkbox_basenames <-
metadata[metadata[, field_type] == "checkbox" &
metadata[, field_name] %in% vars_check,
field_name]
metadata[
metadata[, field_type] == "checkbox" &
metadata[, field_name] %in% vars_check,
field_name
]
fields <- c(fields, checkbox_basenames)
}
# Process instrument status fields
form_names <-
unique(metadata[, grepl(".*[Ff]orm[._][Nn]ame$",
names(metadata))][metadata[, field_name]
%in% fields])
unique(metadata[, grepl(
".*[Ff]orm[._][Nn]ame$",
names(metadata)
)][metadata[, field_name]
%in% fields])
form_complete_fields <- paste0(form_names, "_complete")
@ -54,33 +56,34 @@ focused_metadata <- function(metadata, vars_in_data) {
timestamp_fields <- timestamps
fields <- c(fields, timestamp_fields)
}
# Process ".*\\.factor" fields supplied by REDCap's export data R script
if (any(grepl("\\.factor$", vars_in_data))) {
factor_fields <-
do.call("rbind",
apply(fields,
1,
function(x, y) {
field_indices <- grepl(paste0("^", x[1], "\\.factor$"), y)
if (any(field_indices))
data.frame(
field_name = y[field_indices],
form_name = x[2],
stringsAsFactors = FALSE,
row.names = NULL
)
},
y = vars_in_data))
do.call(
"rbind",
apply(fields,
1,
function(x, y) {
field_indices <- grepl(paste0("^", x[1], "\\.factor$"), y)
if (any(field_indices)) {
data.frame(
field_name = y[field_indices],
form_name = x[2],
stringsAsFactors = FALSE,
row.names = NULL
)
}
},
y = vars_in_data
)
)
fields <- c(fields, factor_fields[, 1])
}
metadata[metadata[, field_name] %in% fields, ]
}
#' clean_redcap_name
@ -94,13 +97,18 @@ focused_metadata <- function(metadata, vars_in_data) {
#' @return vector or data frame, same format as input
#' @export
#'
clean_redcap_name <- function(x){
gsub(" ", "_",
gsub("[' ']$","",
gsub("[^a-z0-9' '_]", "",
tolower(x)
)))}
clean_redcap_name <- function(x) {
gsub(
" ", "_",
gsub(
"[' ']$", "",
gsub(
"[^a-z0-9' '_]", "",
tolower(x)
)
)
)
}
#' Sanitize list of data frames
@ -116,15 +124,18 @@ clean_redcap_name <- function(x){
#'
sanitize_split <- function(l,
generic.names = c(
"record_id",
"redcap_event_name",
"redcap_repeat_instrument",
"redcap_repeat_instance"
)) {
generic.names <- c(get_id_name(l),
generic.names,
paste0(names(l), "_complete"))
lapply(l, function(i) {
if (ncol(i) > 2) {
s <- data.frame(i[, !colnames(i) %in% generic.names])
i[!apply(is.na(s), MARGIN = 1, FUN = all),]
i[!apply(is.na(s), MARGIN = 1, FUN = all), ]
} else {
i
}
@ -132,6 +143,19 @@ sanitize_split <- function(l,
}
#' Get the id name
#'
#' @param data data frame or list
#'
#' @return character vector
get_id_name <- function(data) {
if ("list" %in% class(data)) {
do.call(c, lapply(data, names))[[1]]
} else {
names(data)[[1]]
}
}
#' Match fields to forms
#'
#' @param metadata A data frame containing field names and form names
@ -143,20 +167,23 @@ sanitize_split <- function(l,
#'
#'
match_fields_to_form <- function(metadata, vars_in_data) {
metadata <- data.frame(metadata)
field_form_name <- grepl(".*([Ff]ield|[Ff]orm)[._][Nn]ame$",names(metadata))
field_type <- grepl(".*[Ff]ield[._][Tt]ype$",names(metadata))
field_form_name <- grepl(".*([Ff]ield|[Ff]orm)[._][Nn]ame$", names(metadata))
field_type <- grepl(".*[Ff]ield[._][Tt]ype$", names(metadata))
fields <- metadata[!metadata[,field_type] %in% c("descriptive", "checkbox"),
field_form_name]
fields <- metadata[
!metadata[, field_type] %in% c("descriptive", "checkbox"),
field_form_name
]
names(fields) <- c("field_name", "form_name")
# Process instrument status fields
form_names <- unique(metadata[,grepl(".*[Ff]orm[._][Nn]ame$",
names(metadata))])
form_names <- unique(metadata[, grepl(
".*[Ff]orm[._][Nn]ame$",
names(metadata)
)])
form_complete_fields <- data.frame(
field_name = paste0(form_names, "_complete"),
form_name = form_names,
@ -176,57 +203,65 @@ match_fields_to_form <- function(metadata, vars_in_data) {
)
fields <- rbind(fields, timestamp_fields)
}
# Process checkbox fields
if (any(metadata[,field_type] == "checkbox")) {
checkbox_basenames <- metadata[metadata[,field_type] == "checkbox",
field_form_name]
if (any(metadata[, field_type] == "checkbox")) {
checkbox_basenames <- metadata[
metadata[, field_type] == "checkbox",
field_form_name
]
checkbox_fields <-
do.call("rbind",
apply(checkbox_basenames,
1,
function(x, y)
data.frame(
field_name =
y[grepl(paste0("^", x[1], "___((?!\\.factor).)+$"),
y, perl = TRUE)],
form_name = x[2],
stringsAsFactors = FALSE,
row.names = NULL
),
y = vars_in_data))
do.call(
"rbind",
apply(checkbox_basenames,
1,
function(x, y) {
data.frame(
field_name =
y[grepl(paste0("^", x[1], "___((?!\\.factor).)+$"),
y,
perl = TRUE
)],
form_name = x[2],
stringsAsFactors = FALSE,
row.names = NULL
)
},
y = vars_in_data
)
)
fields <- rbind(fields, checkbox_fields)
}
# Process ".*\\.factor" fields supplied by REDCap's export data R script
if (any(grepl("\\.factor$", vars_in_data))) {
factor_fields <-
do.call("rbind",
apply(fields,
1,
function(x, y) {
field_indices <- grepl(paste0("^", x[1], "\\.factor$"), y)
if (any(field_indices))
data.frame(
field_name = y[field_indices],
form_name = x[2],
stringsAsFactors = FALSE,
row.names = NULL
)
},
y = vars_in_data))
do.call(
"rbind",
apply(fields,
1,
function(x, y) {
field_indices <- grepl(paste0("^", x[1], "\\.factor$"), y)
if (any(field_indices)) {
data.frame(
field_name = y[field_indices],
form_name = x[2],
stringsAsFactors = FALSE,
row.names = NULL
)
}
},
y = vars_in_data
)
)
fields <- rbind(fields, factor_fields)
}
fields
}
#' Split a data frame into separate tables for each form
@ -256,10 +291,12 @@ match_fields_to_form <- function(metadata, vars_in_data) {
#'
#' # Create the fields
#' fields <- matrix(
#' c("form_a_name", "form_a",
#' c(
#' "form_a_name", "form_a",
#' "form_a_age", "form_a",
#' "form_b_name", "form_b",
#' "form_b_gender", "form_b"),
#' "form_b_gender", "form_b"
#' ),
#' ncol = 2, byrow = TRUE
#' )
#'
@ -269,14 +306,17 @@ split_non_repeating_forms <-
function(table, universal_fields, fields) {
forms <- unique(fields[[2]])
x <- lapply(forms,
function (x) {
table[names(table) %in% union(universal_fields,
fields[fields[, 2] == x, 1])]
})
x <- lapply(
forms,
function(x) {
table[names(table) %in% union(
universal_fields,
fields[fields[, 2] == x, 1]
)]
}
)
structure(x, names = forms)
}
@ -295,7 +335,7 @@ split_non_repeating_forms <-
#'
#' @examples
#' test <- c("12 months follow-up", "3 steps", "mRS 6 weeks", "Counting to 231 now")
#' strsplitx(test,"[0-9]",type="around")
#' strsplitx(test, "[0-9]", type = "around")
strsplitx <- function(x,
split,
type = "classic",
@ -306,26 +346,33 @@ strsplitx <- function(x,
out <- base::strsplit(x = x, split = split, perl = perl, ...)
} else if (type == "before") {
# split before the delimiter and keep it
out <- base::strsplit(x = x,
split = paste0("(?<=.)(?=", split, ")"),
perl = TRUE,
...)
out <- base::strsplit(
x = x,
split = paste0("(?<=.)(?=", split, ")"),
perl = TRUE,
...
)
} else if (type == "after") {
# split after the delimiter and keep it
out <- base::strsplit(x = x,
split = paste0("(?<=", split, ")"),
perl = TRUE,
...)
out <- base::strsplit(
x = x,
split = paste0("(?<=", split, ")"),
perl = TRUE,
...
)
} else if (type == "around") {
# split around the defined delimiter
out <- base::strsplit(gsub("~~", "~", # Removes double ~
gsub("^~", "", # Removes leading ~
gsub(
# Splits and inserts ~ at all delimiters
paste0("(", split, ")"), "~\\1~", x
))), "~")
out <- base::strsplit(gsub(
"~~", "~", # Removes double ~
gsub(
"^~", "", # Removes leading ~
gsub(
# Splits and inserts ~ at all delimiters
paste0("(", split, ")"), "~\\1~", x
)
)
), "~")
} else {
# wrong type input
stop("type must be 'classic', 'after', 'before' or 'around'!")
@ -345,37 +392,36 @@ strsplitx <- function(x,
#' @export
#'
#' @examples
#' d2w(c(2:8,21))
#' d2w(data.frame(2:7,3:8,1),lang="da",neutrum=TRUE)
#' d2w(c(2:8, 21))
#' d2w(data.frame(2:7, 3:8, 1), lang = "da", neutrum = TRUE)
#'
#' ## If everything=T, also larger numbers are reduced.
#' ## Elements in the list are same length as input
#' d2w(list(2:8,c(2,6,4,23),2), everything=TRUE)
#' d2w(list(2:8, c(2, 6, 4, 23), 2), everything = TRUE)
#'
d2w <- function(x, lang = "en", neutrum=FALSE, everything=FALSE) {
d2w <- function(x, lang = "en", neutrum = FALSE, everything = FALSE) {
# In Danish the written 1 depends on the counted word
if (neutrum) nt <- "t" else nt <- "n"
# A sapply() call with nested lapply() to handle vectors, data.frames and lists
convert <- function(x, lang, neutrum) {
zero_nine = data.frame(
zero_nine <- data.frame(
num = 0:9,
en = c(
'zero',
'one',
'two',
'three',
'four',
'five',
'six',
'seven',
'eight',
'nine'
"zero",
"one",
"two",
"three",
"four",
"five",
"six",
"seven",
"eight",
"nine"
),
da = c(
"nul",
paste0("e",nt),
paste0("e", nt),
"to",
"tre",
"fire",
@ -401,18 +447,45 @@ d2w <- function(x, lang = "en", neutrum=FALSE, everything=FALSE) {
# Also converts numbers >9 to single digits and writes out
# Uses strsplitx()
if (everything) {
out <- sapply(x,function(y){
do.call(c,lapply(y,function(z){
v <- strsplitx(z,"[0-9]",type="around")
Reduce(paste,sapply(v,convert,lang = lang, neutrum = neutrum))
out <- sapply(x, function(y) {
do.call(c, lapply(y, function(z) {
v <- strsplitx(z, "[0-9]", type = "around")
Reduce(paste, sapply(v, convert, lang = lang, neutrum = neutrum))
}))
})
} else {
out <- sapply(x,convert,lang = lang, neutrum = neutrum)
out <- sapply(x, convert, lang = lang, neutrum = neutrum)
}
if (is.data.frame(x)) out <- data.frame(out)
out
}
#' Test if repeatable or longitudinal
#'
#' @param data data set
#' @param generics default is "redcap_event_name", "redcap_repeat_instrument"
#' and "redcap_repeat_instance"
#'
#' @return logical
#' @examples
#' is.repeated_longitudinal(c("record_id", "age", "record_id", "gender"))
#' is.repeated_longitudinal(redcapcast_data)
#' is.repeated_longitudinal(list(redcapcast_data))
is.repeated_longitudinal <- function(data, generics = c(
"redcap_event_name",
"redcap_repeat_instrument",
"redcap_repeat_instance"
)) {
if ("list" %in% class(data)) {
names <- data |>
lapply(names) |>
purrr::list_c()
} else if ("data.frame" %in% class(data)) {
names <- names(data)
} else if ("character" %in% class(data)) {
names <- data
}
any(generics %in% names)
}

View File

@ -3,6 +3,10 @@
redcapcast_data <- REDCapR::redcap_read(redcap_uri = keyring::key_get("DB_URI"),
token = keyring::key_get("cast_api"),
raw_or_label = "label"
)$data
)$data |> dplyr::tibble()
# redcapcast_data <- easy_redcap(project.name = "redcapcast_pacakge",
# uri = keyring::key_get("DB_URI"),
# widen.data = FALSE)
usethis::use_data(redcapcast_data, overwrite = TRUE)

Binary file not shown.

View File

@ -22,11 +22,11 @@ returns characters in same format as input
Convert single digits to words
}
\examples{
d2w(c(2:8,21))
d2w(data.frame(2:7,3:8,1),lang="da",neutrum=TRUE)
d2w(c(2:8, 21))
d2w(data.frame(2:7, 3:8, 1), lang = "da", neutrum = TRUE)
## If everything=T, also larger numbers are reduced.
## Elements in the list are same length as input
d2w(list(2:8,c(2,6,4,23),2), everything=TRUE)
d2w(list(2:8, c(2, 6, 4, 23), 2), everything = TRUE)
}

View File

@ -8,7 +8,7 @@ easy_redcap(project.name, widen.data = TRUE, uri, ...)
}
\arguments{
\item{project.name}{The name of the current project (for key storage with
`keyring::key_set()`)}
`keyring::key_set()`, using the default keyring)}
\item{widen.data}{argument to widen the exported data}

17
man/get_id_name.Rd Normal file
View File

@ -0,0 +1,17 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/utils.r
\name{get_id_name}
\alias{get_id_name}
\title{Get the id name}
\usage{
get_id_name(data)
}
\arguments{
\item{data}{data frame or list}
}
\value{
character vector
}
\description{
Get the id name
}

View File

@ -0,0 +1,28 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/utils.r
\name{is.repeated_longitudinal}
\alias{is.repeated_longitudinal}
\title{Test if repeatable or longitudinal}
\usage{
is.repeated_longitudinal(
data,
generics = c("redcap_event_name", "redcap_repeat_instrument", "redcap_repeat_instance")
)
}
\arguments{
\item{data}{data set}
\item{generics}{default is "redcap_event_name", "redcap_repeat_instrument"
and "redcap_repeat_instance"}
}
\value{
logical
}
\description{
Test if repeatable or longitudinal
}
\examples{
is.repeated_longitudinal(c("record_id", "age", "record_id", "gender"))
is.repeated_longitudinal(redcapcast_data)
is.repeated_longitudinal(list(redcapcast_data))
}

View File

@ -12,8 +12,7 @@ read_redcap_tables(
events = NULL,
forms = NULL,
raw_or_label = "label",
split_forms = "all",
generics = c("redcap_event_name", "redcap_repeat_instrument", "redcap_repeat_instance")
split_forms = "all"
)
}
\arguments{

View File

@ -5,13 +5,13 @@
\title{Redcap Wider}
\usage{
redcap_wider(
list,
data,
event.glue = "{.value}_{redcap_event_name}",
inst.glue = "{.value}_{redcap_repeat_instance}"
)
}
\arguments{
\item{list}{A list of data frames.}
\item{data}{A list of data frames.}
\item{event.glue}{A dplyr::glue string for repeated events naming}
@ -25,11 +25,36 @@ Converts a list of REDCap data frames from long to wide format.
Handles longitudinal projects, but not yet repeated instruments.
}
\examples{
list <- list(data.frame(record_id = c(1,2,1,2),
# Longitudinal
list1 <- list(data.frame(record_id = c(1,2,1,2),
redcap_event_name = c("baseline", "baseline", "followup", "followup"),
age = c(25,26,27,28)),
data.frame(record_id = c(1,2),
redcap_event_name = c("baseline", "baseline"),
gender = c("male", "female")))
redcap_wider(list)
redcap_wider(list1)
# Simpel with two instruments
list2 <- list(data.frame(record_id = c(1,2),
age = c(25,26)),
data.frame(record_id = c(1,2),
gender = c("male", "female")))
redcap_wider(list2)
# Simple with single instrument
list3 <- list(data.frame(record_id = c(1,2),
age = c(25,26)))
redcap_wider(list3)
# Longitudinal with repeatable instruments
list4 <- list(data.frame(record_id = c(1,2,1,2),
redcap_event_name = c("baseline", "baseline", "followup", "followup"),
age = c(25,26,27,28)),
data.frame(record_id = c(1,1,1,1,2,2,2,2),
redcap_event_name = c("baseline", "baseline", "followup", "followup",
"baseline", "baseline", "followup", "followup"),
redcap_repeat_instrument = "walk",
redcap_repeat_instance=c(1,2,1,2,1,2,1,2),
dist = c(40, 32, 25, 33, 28, 24, 23, 36)),
data.frame(record_id = c(1,2),
redcap_event_name = c("baseline", "baseline"),
gender = c("male", "female")))
redcap_wider(list4)
}

View File

@ -6,7 +6,7 @@
\usage{
sanitize_split(
l,
generic.names = c("record_id", "redcap_event_name", "redcap_repeat_instrument",
generic.names = c("redcap_event_name", "redcap_repeat_instrument",
"redcap_repeat_instance")
)
}

View File

@ -36,10 +36,12 @@ universal_fields <- c("id")
# Create the fields
fields <- matrix(
c("form_a_name", "form_a",
c(
"form_a_name", "form_a",
"form_a_age", "form_a",
"form_b_name", "form_b",
"form_b_gender", "form_b"),
"form_b_gender", "form_b"
),
ncol = 2, byrow = TRUE
)

View File

@ -26,5 +26,5 @@ easing the split around the defined delimiter, see example.
}
\examples{
test <- c("12 months follow-up", "3 steps", "mRS 6 weeks", "Counting to 231 now")
strsplitx(test,"[0-9]",type="around")
strsplitx(test, "[0-9]", type = "around")
}

View File

@ -3,10 +3,11 @@
#devtools::install_github("pegeler/REDCapRITS/R@longitudinal-data")
# Debugging reading in longitudinal datasets ------------------------------
# setwd(here::here(""))
# Reading in the files
file_paths <- file.path(
"../test-data/test_splitr/",
"test-data/test_splitr",
c(
records = "WARRIORtestForSoftwa_DATA_2018-06-21_1431.csv",
metadata = "WARRIORtestForSoftwareUpgrades_DataDictionary_2018-06-21.csv"

View File

@ -35,7 +35,7 @@ redcapcast_meta |> gt::gt()
list <-
REDCap_split(records = redcapcast_data,
metadata = redcapcast_meta,
forms = "repeating")
forms = "repeating")|> sanitize_split()
str(list)
```
@ -43,7 +43,7 @@ str(list)
list <-
REDCap_split(records = redcapcast_data,
metadata = redcapcast_meta,
forms = "all")
forms = "all") |> sanitize_split()
str(list)
```
@ -60,7 +60,7 @@ The function works very similar to the `REDCapR::redcap_read()` in allowing to s
## Pivotting to wider format
```{r}
# redcap_wider(ds)
redcap_wider(list) |> str()
```