Compare commits

...

9 Commits

27 changed files with 493 additions and 284 deletions

View File

@ -16,7 +16,6 @@
^cran-comments\.md$
^CRAN-SUBMISSION$
drafting
app
^\.lintr$
^CODE_OF_CONDUCT\.md$
^~/REDCapCAST/inst/shiny-examples/casting/rsconnect$

View File

@ -33,7 +33,8 @@ Suggests:
devtools,
roxygen2,
spelling,
rhub
rhub,
rsconnect
License: GPL (>= 3)
Encoding: UTF-8
LazyData: true
@ -71,6 +72,7 @@ Collate:
'ds2dd_detailed.R'
'easy_redcap.R'
'export_redcap_instrument.R'
'fct_drop.R'
'html_styling.R'
'mtcars_redcap.R'
'read_redcap_instrument.R'

View File

@ -1,17 +1,21 @@
# Generated by roxygen2: do not edit by hand
S3method(as_factor,character)
S3method(as_factor,data.frame)
S3method(as_factor,factor)
S3method(as_factor,haven_labelled)
S3method(as_factor,labelled)
S3method(as_factor,logical)
S3method(as_factor,numeric)
S3method(as_factor,redcapcast_labelled)
S3method(process_user_input,character)
S3method(process_user_input,data.frame)
S3method(process_user_input,default)
S3method(process_user_input,response)
export(REDCap_split)
export(all_na)
export(apply_factor_labels)
export(apply_field_label)
export(as_factor)
export(case_match_regex_list)
export(cast_data_overview)
@ -30,6 +34,8 @@ export(ds2dd_detailed)
export(easy_redcap)
export(export_redcap_instrument)
export(fct2num)
export(fct_drop)
export(fct_drop.data.frame)
export(file_extension)
export(focused_metadata)
export(format_subheader)
@ -39,6 +45,7 @@ export(guess_time_only)
export(guess_time_only_filter)
export(haven_all_levels)
export(html_tag_wrap)
export(is.labelled)
export(is_repeated_longitudinal)
export(match_fields_to_form)
export(named_levels)
@ -49,9 +56,7 @@ export(possibly_roman)
export(process_user_input)
export(read_input)
export(read_redcap_instrument)
export(read_redcap_labelled)
export(read_redcap_tables)
export(redcap_meta_default)
export(redcap_wider)
export(sanitize_split)
export(set_attr)
@ -64,6 +69,7 @@ importFrom(REDCapR,redcap_event_instruments)
importFrom(REDCapR,redcap_metadata_read)
importFrom(REDCapR,redcap_read)
importFrom(forcats,as_factor)
importFrom(forcats,fct_drop)
importFrom(keyring,key_get)
importFrom(keyring,key_list)
importFrom(keyring,key_set)

10
NEWS.md
View File

@ -1,8 +1,14 @@
# REDCapCAST 24.11.4
The hosting on shinyapps.io has given a lot of trouble recently. Modyfied package structure a little around the `shiny_cast()`, to accommodate an alternative hosting approach with all package functions included in a script instead of requiring the package.
This release attempts to solve problems hosting the shiny_cast app, while also implementing functions to preserve as much meta data as possible from the REDCap database when exporting data.
* read_readcap_labelled():
The hosting on shinyapps.io has given a lot of trouble recently. Modified package structure a little around the `shiny_cast()`, to accommodate an alternative hosting approach with all package functions included in a script instead of requiring the package.
* NEW: A new option to `raw_or_label` in `read_readcap_tables()` has been added: "both". Get raw values with REDCap labels applied as labels. Use `as_factor()` to format factors with original labels and use the `gtsummary` package to easily get beautiful tables with original labels from REDCap. Use `fct_drop()` to drop empty levels.
* NEW: fct_drop() has been added with an extension to `forcats::fct_drop()`, that works across data.frames. Use as `fct_drop()`.
* CHANGE: the default data export method of `easy_redcap()` has been changed to use the new labelled data export with `read_readcap_tables()`.
# REDCapCAST 24.11.3

View File

@ -9,6 +9,7 @@
#'
#' @param x Object to coerce to a factor.
#' @param ... Other arguments passed down to method.
#' @param only_labelled Only apply to labelled columns?
#' @export
#' @examples
#' # will preserve all attributes
@ -125,6 +126,45 @@ as_factor.haven_labelled <- function(x, levels = c("default", "labels", "values"
#' @rdname as_factor
as_factor.labelled <- as_factor.haven_labelled
#' @export
#' @rdname as_factor
as_factor.redcapcast_labelled <- as_factor.haven_labelled
#' @rdname as_factor
#' @export
as_factor.data.frame <- function(x, ..., only_labelled = TRUE) {
if (only_labelled) {
labelled <- vapply(x, is.labelled, logical(1))
x[labelled] <- lapply(x[labelled], as_factor, ...)
} else {
x[] <- lapply(x, as_factor, ...)
}
x
}
#' Tests for multiple label classes
#'
#' @param x data
#' @param classes classes to test
#'
#' @return logical
#' @export
#'
#' @examples
#' structure(c(1, 2, 3, 2, 10, 9),
#' labels = c(Unknown = 9, Refused = 10),
#' class = "haven_labelled"
#' ) |> is.labelled()
is.labelled <- function(x, classes = c("redcapcast_labelled", "haven_labelled", "labelled")) {
classes |>
sapply(\(.class){
inherits(x, .class)
}) |>
any()
}
replace_with <- function(x, from, to) {
stopifnot(length(from) == length(to))
@ -224,9 +264,11 @@ named_levels <- function(data, label = "labels", na.label = NULL, na.value = 99)
if (length(attr_l) != 0) {
if (all(names(attr_l) %in% d$name)) {
d$value[match(names(attr_l), d$name)] <- unname(attr_l)
} else if (all(d$name %in% names(attr_l)) && nrow(d) < length(attr_l)){
d <- data.frame(name = names(attr_l),
value=unname(attr_l))
} else if (all(d$name %in% names(attr_l)) && nrow(d) < length(attr_l)) {
d <- data.frame(
name = names(attr_l),
value = unname(attr_l)
)
} else {
d$name[match(attr_l, d$name)] <- names(attr_l)
d$value[match(names(attr_l), d$name)] <- unname(attr_l)

View File

@ -99,26 +99,6 @@ hms2character <- function(data) {
}
#' Default column names of a REDCap data dictionary
#'
#' @param ... ignored for now
#'
#' @return character vector
#' @export
#'
#' @examples
#' dput(redcap_meta_default())
redcap_meta_default <- function(...) {
c(
"field_name", "form_name", "section_header", "field_type",
"field_label", "select_choices_or_calculations", "field_note",
"text_validation_type_or_show_slider_number", "text_validation_min",
"text_validation_max", "identifier", "branching_logic", "required_field",
"custom_alignment", "question_number", "matrix_group_name", "matrix_ranking",
"field_annotation"
)
}
#' (DEPRECATED) Data set to data dictionary function
#'
#' @description
@ -141,7 +121,7 @@ redcap_meta_default <- function(...) {
#' @param include.column.names Flag to give detailed output including new
#' column names for original data set for upload.
#' @param metadata Metadata column names. Default is the included
#' REDCapCAST::redcap_meta_default.
#' names(REDCapCAST::redcapcast_meta).
#'
#' @return data.frame or list of data.frame and vector
#' @export
@ -157,7 +137,7 @@ ds2dd <-
field.type = "text",
field.label = NULL,
include.column.names = FALSE,
metadata = REDCapCAST::redcap_meta_default()
metadata = names(REDCapCAST::redcapcast_meta)
) {
dd <- data.frame(matrix(ncol = length(metadata), nrow = ncol(ds)))
colnames(dd) <- metadata
@ -244,7 +224,7 @@ ds2dd <-
#' or attribute `factor.labels.attr` for haven_labelled data set (imported .dta
#' file with `haven::read_dta()`).
#' @param metadata redcap metadata headings. Default is
#' REDCapCAST::redcap_meta_default().
#' names(REDCapCAST::redcapcast_meta).
#' @param convert.logicals convert logicals to factor. Default is TRUE.
#'
#' @return list of length 2
@ -286,7 +266,7 @@ ds2dd_detailed <- function(data,
field.label = NULL,
field.label.attr = "label",
field.validation = NULL,
metadata = REDCapCAST::redcap_meta_default(),
metadata = names(REDCapCAST::redcapcast_meta),
convert.logicals = TRUE) {
if (convert.logicals) {

View File

@ -31,6 +31,7 @@ easy_redcap <- function(project.name, widen.data = TRUE, uri, ...) {
out <- read_redcap_tables(
uri = uri,
token = key,
raw_or_label = "both",
...
)
@ -40,167 +41,3 @@ easy_redcap <- function(project.name, widen.data = TRUE, uri, ...) {
out
}
#' REDCap read function to preserve field labels and all factor levels
#'
#' @description
#' This works very much as `read_redcap_tables()` and might end up there
#'
#'
#' @param uri REDCap database API uri
#' @param token API token
#' @param records records to download
#' @param fields fields to download
#' @param events events to download
#' @param forms forms to download
#' @param split_forms Whether to split "repeating" or "all" forms, default is
#' "all".
#'
#' @return data.frame or list
#' @export
#'
read_redcap_labelled <- function(uri,
token,
records = NULL,
fields = NULL,
events = NULL,
forms = NULL,
split_forms = "all") {
m <-
REDCapR::redcap_metadata_read(redcap_uri = uri, token = token)[["data"]]
# Tests
if (!is.null(fields)) {
fields_test <- fields %in% c(m$field_name, paste0(unique(m$form_name), "_complete"))
if (any(!fields_test)) {
print(paste0(
"The following field names are invalid: ",
paste(fields[!fields_test], collapse = ", "), "."
))
stop("Not all supplied field names are valid")
}
}
if (!is.null(forms)) {
forms_test <- forms %in% unique(m$form_name)
if (any(!forms_test)) {
print(paste0(
"The following form names are invalid: ",
paste(forms[!forms_test], collapse = ", "), "."
))
stop("Not all supplied form names are valid")
}
}
if (!is.null(events)) {
arm_event_inst <- REDCapR::redcap_event_instruments(
redcap_uri = uri,
token = token
)
event_test <- events %in% unique(arm_event_inst$data$unique_event_name)
if (any(!event_test)) {
print(paste0(
"The following event names are invalid: ",
paste(events[!event_test], collapse = ", "), "."
))
stop("Not all supplied event names are valid")
}
}
# Getting dataset
d <- REDCapR::redcap_read(
redcap_uri = uri,
token = token,
fields = fields,
events = events,
forms = forms,
records = records,
raw_or_label = "raw"
)[["data"]]
# Applying labels
d <- purrr::imap(d, \(.x, .i){
if (.i %in% m$field_name) {
# Does not handle checkboxes
out <- set_attr(.x,
label = clean_field_label(m$field_label[m$field_name == .i]),
attr = "label"
)
out
} else {
.x
}
}) |> dplyr::bind_cols()
d <- purrr::imap(d, \(.x, .i){
if (any(c("radio", "dropdown") %in% m$field_type[m$field_name == .i])) {
format_redcap_factor(.x, m$select_choices_or_calculations[m$field_name == .i])
} else {
.x
}
}) |> dplyr::bind_cols()
# Process repeat instrument naming
# Removes any extra characters other than a-z, 0-9 and "_", to mimic raw
# instrument names.
if ("redcap_repeat_instrument" %in% names(d)) {
d$redcap_repeat_instrument <- clean_redcap_name(d$redcap_repeat_instrument)
}
# Processing metadata to reflect focused dataset
m <- focused_metadata(m, names(d))
# Splitting
out <- REDCap_split(d,
m,
forms = split_forms,
primary_table_name = ""
)
sanitize_split(out)
}
#' Very simple function to remove rich text formatting from field label
#' and save the first paragraph ('<p>...</p>').
#'
#' @param data field label
#'
#' @return character vector
#' @export
#'
#' @examples
#' clean_field_label("<div class=\"rich-text-field-label\"><p>Fazekas score</p></div>")
clean_field_label <- function(data) {
out <- data |>
lapply(\(.x){
unlist(strsplit(.x, "</"))[1]
}) |>
lapply(\(.x){
splt <- unlist(strsplit(.x, ">"))
splt[length(splt)]
})
Reduce(c, out)
}
format_redcap_factor <- function(data, meta) {
lvls <- strsplit(meta, " | ", fixed = TRUE) |>
unlist() |>
lapply(\(.x){
splt <- unlist(strsplit(.x, ", "))
stats::setNames(splt[1], nm = paste(splt[-1], collapse = ", "))
}) |>
(\(.x){
Reduce(c, .x)
})()
set_attr(data, label = lvls, attr = "labels") |>
set_attr(data, label = "labelled", attr = "class") |>
as_factor()
}

29
R/fct_drop.R Normal file
View File

@ -0,0 +1,29 @@
#' Drop unused levels preserving label data
#'
#' This extends [forcats::fct_drop()] to natively work across a data.frame and
#' replace [base::droplevels()].
#'
#' @param x Factor to drop unused levels
#' @param ... Other arguments passed down to method.
#' @export
#'
#' @importFrom forcats fct_drop
#' @export
#' @name fct_drop
NULL
#' @rdname fct_drop
#' @export
fct_drop.data.frame <- function(x, ...) {
purrr::map(\(.x){
if (is.factor(.x)){
forcats::fct_drop(.x)
} else {
.x
}
}) |>
dplyr::bind_cols()
}

View File

@ -11,7 +11,15 @@
#' @param fields fields to download
#' @param events events to download
#' @param forms forms to download
#' @param raw_or_label raw or label tags
#' @param raw_or_label raw or label tags. Can be
#'
#' * "raw": Standard [REDCapR] method to get raw values.
#' * "label": Standard [REDCapR] method to get label values.
#' * "both": Get raw values with REDCap labels applied as labels. Use
#' [as_factor()] to format factors with original labels and use the
#' [gtsummary] package to easily get beautiful tables with original labels
#' from REDCap. Use [fct_drop()] to drop empty levels.
#'
#' @param split_forms Whether to split "repeating" or "all" forms, default is
#' all.
#'
@ -70,6 +78,12 @@ read_redcap_tables <- function(uri,
}
}
if (raw_or_label=="both"){
rorl <- "raw"
} else {
rorl <- raw_or_label
}
# Getting dataset
d <- REDCapR::redcap_read(
redcap_uri = uri,
@ -78,9 +92,16 @@ read_redcap_tables <- function(uri,
events = events,
forms = forms,
records = records,
raw_or_label = raw_or_label
raw_or_label = rorl
)[["data"]]
if (raw_or_label=="both"){
d <- apply_field_label(data=d,meta=m)
d <- apply_factor_labels(data=d,meta=m)
}
# Process repeat instrument naming
# Removes any extra characters other than a-z, 0-9 and "_", to mimic raw
# instrument names.
@ -101,3 +122,84 @@ read_redcap_tables <- function(uri,
sanitize_split(out)
}
#' Very simple function to remove rich text formatting from field label
#' and save the first paragraph ('<p>...</p>').
#'
#' @param data field label
#'
#' @return character vector
#' @export
#'
#' @examples
#' clean_field_label("<div class=\"rich-text-field-label\"><p>Fazekas score</p></div>")
clean_field_label <- function(data) {
out <- data |>
lapply(\(.x){
unlist(strsplit(.x, "</"))[1]
}) |>
lapply(\(.x){
splt <- unlist(strsplit(.x, ">"))
splt[length(splt)]
})
Reduce(c, out)
}
format_redcap_factor <- function(data, meta) {
lvls <- strsplit(meta, " | ", fixed = TRUE) |>
unlist() |>
lapply(\(.x){
splt <- unlist(strsplit(.x, ", "))
stats::setNames(splt[1], nm = paste(splt[-1], collapse = ", "))
}) |>
(\(.x){
Reduce(c, .x)
})()
set_attr(data, label = lvls, attr = "labels") |>
set_attr(data, label = "redcapcast_labelled", attr = "class")
}
#' Apply REDCap filed labels to data frame
#'
#' @param data REDCap exported data set
#' @param meta REDCap data dictionary
#'
#' @return data.frame
#' @export
#'
apply_field_label <- function(data,meta){
purrr::imap(data, \(.x, .i){
if (.i %in% meta$field_name) {
# Does not handle checkboxes
out <- set_attr(.x,
label = clean_field_label(meta$field_label[meta$field_name == .i]),
attr = "label"
)
out
} else {
.x
}
}) |> dplyr::bind_cols()
}
#' Preserve all factor levels from REDCap data dictionary in data export
#'
#' @param data REDCap exported data set
#' @param meta REDCap data dictionary
#'
#' @return data.frame
#' @export
#'
apply_factor_labels <- function(data,meta){
purrr::imap(data, \(.x, .i){
if (any(c("radio", "dropdown") %in% meta$field_type[meta$field_name == .i])) {
format_redcap_factor(.x, meta$select_choices_or_calculations[meta$field_name == .i])
} else {
.x
}
}) |> dplyr::bind_cols()
}

Binary file not shown.

View File

@ -7,9 +7,9 @@
# "matrix_ranking", "field_annotation"
# )
# metadata_names <- REDCapR::redcap_metadata_read(
# redcap_uri = keyring::key_get("DB_URI"),
# token = keyring::key_get("cast_api")
# )$data |> names()
#
# usethis::use_data(metadata_names, overwrite = TRUE, internal = TRUE)
metadata_names <- REDCapR::redcap_metadata_read(
redcap_uri = keyring::key_get("DB_URI"),
token = keyring::key_get("cast_api")
)$data |> names()
usethis::use_data(metadata_names, overwrite = TRUE, internal = TRUE)

View File

@ -41,6 +41,7 @@ dmy
docx
doi
dplyr
droplevels
ds
dta
et
@ -49,6 +50,7 @@ factorising
fct
forcats
github
gtsummary
gues
hms
https
@ -77,6 +79,7 @@ rds
readr
realising
redcapAPI
redcapcast
renv
runApp
sel

View File

@ -8,23 +8,16 @@ library(dplyr)
library(gt)
library(devtools)
if (!requireNamespace("REDCapCAST")) {
install.packages("REDCapCAST")
}
library(REDCapCAST)
# if (!requireNamespace("REDCapCAST")) {
# install.packages("REDCapCAST")
# }
# library(REDCapCAST)
## Load merged files for shinyapps.io hosting
if (file.exists(here::here("functions.R"))) {
source(here::here("functions.R"))
}
ui <-
bslib::page(
theme = bslib::bs_theme(preset = "united"),
title = "REDCap database creator",
nav_bar_page()
)
server <- function(input, output, session) {
v <- shiny::reactiveValues(
file = NULL
@ -72,7 +65,15 @@ server <- function(input, output, session) {
v$file <- "loaded"
ds2dd_detailed(
data = dat(),
add.auto.id = input$add_id == "yes"
add.auto.id = input$add_id == "yes",
metadata = c(
"field_name", "form_name", "section_header", "field_type",
"field_label", "select_choices_or_calculations", "field_note",
"text_validation_type_or_show_slider_number", "text_validation_min",
"text_validation_max", "identifier", "branching_logic", "required_field",
"custom_alignment", "question_number", "matrix_group_name", "matrix_ranking",
"field_annotation"
)
)
})
@ -192,4 +193,150 @@ server <- function(input, output, session) {
# })
}
ui <-
bslib::page(
theme = bslib::bs_theme(preset = "united"),
title = "REDCap database creator",
bslib::page_navbar(
title = "Easy REDCap database creation",
sidebar = bslib::sidebar(
width = 300,
shiny::h5("Metadata casting"),
shiny::fileInput(
inputId = "ds",
label = "Upload spreadsheet",
multiple = FALSE,
accept = c(
".csv",
".xls",
".xlsx",
".dta",
".rds",
".ods"
)
),
# shiny::actionButton(
# inputId = "load_data",
# label = "Load data",
# icon = shiny::icon("circle-down")
# ),
shiny::helpText("Have a look at the preview panels to validate the data dictionary and imported data."),
# For some odd reason this only unfolds when the preview panel is shown..
# This has been solved by adding an arbitrary button to load data - which was abandoned again
shiny::conditionalPanel(
condition = "output.uploaded=='yes'",
shiny::radioButtons(
inputId = "add_id",
label = "Add ID, or use first column?",
selected = "no",
inline = TRUE,
choices = list(
"First column" = "no",
"Add ID" = "yes",
"No ID" = "none"
)
),
shiny::radioButtons(
inputId = "specify_factors",
label = "Specify categorical variables?",
selected = "no",
inline = TRUE,
choices = list(
"No" = "no",
"Yes" = "yes"
)
),
shiny::conditionalPanel(
condition = "input.specify_factors=='yes'",
shiny::uiOutput("factor_vars")
),
# condition = "input.load_data",
# shiny::helpText("Below you can download the dataset formatted for upload and the
# corresponding data dictionary for a new data base, if you want to upload manually."),
# Button
shiny::downloadButton(outputId = "downloadData", label = "Download renamed data"),
# Button
shiny::downloadButton(outputId = "downloadMeta", label = "Download data dictionary"),
# Button
shiny::downloadButton(outputId = "downloadInstrument", label = "Download as instrument"),
# Horizontal line ----
shiny::tags$hr(),
shiny::radioButtons(
inputId = "upload_redcap",
label = "Upload directly to REDCap server?",
selected = "no",
inline = TRUE,
choices = list(
"No" = "no",
"Yes" = "yes"
)
),
shiny::conditionalPanel(
condition = "input.upload_redcap=='yes'",
shiny::h4("2) Data base upload"),
shiny::helpText("This tool is usable for now. Detailed instructions are coming."),
shiny::textInput(
inputId = "uri",
label = "URI",
value = "https://redcap.your.institution/api/"
),
shiny::textInput(
inputId = "api",
label = "API key",
value = ""
),
shiny::helpText("An API key is an access key to the REDCap database. Please", shiny::a("see here for directions", href = "https://www.iths.org/news/redcap-tip/redcap-api-101/"), " to obtain an API key for your project."),
shiny::actionButton(
inputId = "upload.meta",
label = "Upload datadictionary", icon = shiny::icon("book-bookmark")
),
shiny::helpText("Please note, that before uploading any real data, put your project
into production mode."),
shiny::actionButton(
inputId = "upload.data",
label = "Upload data", icon = shiny::icon("upload")
)
)
),
shiny::br(),
shiny::br(),
shiny::br(),
shiny::p(
"License: ", shiny::a("GPL-3+", href = "https://agdamsbo.github.io/REDCapCAST/LICENSE.html")
),
shiny::p(
shiny::a("Package documentation", href = "https://agdamsbo.github.io/REDCapCAST")
)
),
bslib::nav_panel(
title = "Intro",
shiny::markdown(readLines("www/SHINYCAST.md")),
shiny::br()
),
# bslib::nav_spacer(),
bslib::nav_panel(
title = "Data preview",
gt::gt_output(outputId = "data.tbl")
# shiny::htmlOutput(outputId = "data.tbl", container = shiny::span)
),
bslib::nav_panel(
title = "Dictionary overview",
gt::gt_output(outputId = "meta.tbl")
# shiny::htmlOutput(outputId = "meta.tbl", container = shiny::span)
),
bslib::nav_panel(
title = "Upload",
shiny::h3("Meta upload overview"),
shiny::textOutput(outputId = "upload.meta.print"),
shiny::h3("Data upload overview"),
shiny::textOutput(outputId = "upload.data.print")
)
)
)
shiny::shinyApp(ui = ui, server = server)

View File

@ -0,0 +1,10 @@
name: redcapcast-dev
title:
username: agdamsbo
account: agdamsbo
server: shinyapps.io
hostUrl: https://api.shinyapps.io/v1
appId: 13463848
bundleId: 9425126
url: https://agdamsbo.shinyapps.io/redcapcast-dev/
version: 1

View File

@ -5,6 +5,6 @@ account: agdamsbo
server: shinyapps.io
hostUrl: https://api.shinyapps.io/v1
appId: 11351429
bundleId: 9418747
bundleId: 9425139
url: https://agdamsbo.shinyapps.io/redcapcast/
version: 1

View File

@ -0,0 +1,19 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/read_redcap_tables.R
\name{apply_factor_labels}
\alias{apply_factor_labels}
\title{Preserve all factor levels from REDCap data dictionary in data export}
\usage{
apply_factor_labels(data, meta)
}
\arguments{
\item{data}{REDCap exported data set}
\item{meta}{REDCap data dictionary}
}
\value{
data.frame
}
\description{
Preserve all factor levels from REDCap data dictionary in data export
}

19
man/apply_field_label.Rd Normal file
View File

@ -0,0 +1,19 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/read_redcap_tables.R
\name{apply_field_label}
\alias{apply_field_label}
\title{Apply REDCap filed labels to data frame}
\usage{
apply_field_label(data, meta)
}
\arguments{
\item{data}{REDCap exported data set}
\item{meta}{REDCap data dictionary}
}
\value{
data.frame
}
\description{
Apply REDCap filed labels to data frame
}

View File

@ -8,6 +8,8 @@
\alias{as_factor.character}
\alias{as_factor.haven_labelled}
\alias{as_factor.labelled}
\alias{as_factor.redcapcast_labelled}
\alias{as_factor.data.frame}
\title{Convert labelled vectors to factors while preserving attributes}
\usage{
as_factor(x, ...)
@ -33,6 +35,15 @@ as_factor(x, ...)
ordered = FALSE,
...
)
\method{as_factor}{redcapcast_labelled}(
x,
levels = c("default", "labels", "values", "both"),
ordered = FALSE,
...
)
\method{as_factor}{data.frame}(x, ..., only_labelled = TRUE)
}
\arguments{
\item{x}{Object to coerce to a factor.}
@ -49,6 +60,8 @@ as_factor(x, ...)
\item{ordered}{If `TRUE` create an ordered (ordinal) factor, if
`FALSE` (the default) create a regular (nominal) factor.}
\item{only_labelled}{Only apply to labelled columns?}
}
\description{
This extends [forcats::as_factor()] as well as [haven::as_factor()], by appending

View File

@ -1,5 +1,5 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/easy_redcap.R
% Please edit documentation in R/read_redcap_tables.R
\name{clean_field_label}
\alias{clean_field_label}
\title{Very simple function to remove rich text formatting from field label

View File

@ -11,7 +11,7 @@ ds2dd(
field.type = "text",
field.label = NULL,
include.column.names = FALSE,
metadata = REDCapCAST::redcap_meta_default()
metadata = names(REDCapCAST::redcapcast_meta)
)
}
\arguments{
@ -34,7 +34,7 @@ names.}
column names for original data set for upload.}
\item{metadata}{Metadata column names. Default is the included
REDCapCAST::redcap_meta_default.}
names(REDCapCAST::redcapcast_meta).}
}
\value{
data.frame or list of data.frame and vector

View File

@ -15,7 +15,7 @@ ds2dd_detailed(
field.label = NULL,
field.label.attr = "label",
field.validation = NULL,
metadata = REDCapCAST::redcap_meta_default(),
metadata = names(REDCapCAST::redcapcast_meta),
convert.logicals = TRUE
)
}
@ -55,7 +55,7 @@ or attribute `factor.labels.attr` for haven_labelled data set (imported .dta
file with `haven::read_dta()`).}
\item{metadata}{redcap metadata headings. Default is
REDCapCAST::redcap_meta_default().}
names(REDCapCAST::redcapcast_meta).}
\item{convert.logicals}{convert logicals to factor. Default is TRUE.}
}

18
man/fct_drop.Rd Normal file
View File

@ -0,0 +1,18 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/fct_drop.R
\name{fct_drop}
\alias{fct_drop}
\alias{fct_drop.data.frame}
\title{Drop unused levels preserving label data}
\usage{
fct_drop.data.frame(x, ...)
}
\arguments{
\item{x}{Factor to drop unused levels}
\item{...}{Other arguments passed down to method.}
}
\description{
This extends [forcats::fct_drop()] to natively work across a data.frame and
replace [base::droplevels()].
}

28
man/is.labelled.Rd Normal file
View File

@ -0,0 +1,28 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/as_factor.R
\name{is.labelled}
\alias{is.labelled}
\title{Tests for multiple label classes}
\usage{
is.labelled(
x,
classes = c("redcapcast_labelled", "haven_labelled", "labelled")
)
}
\arguments{
\item{x}{data}
\item{classes}{classes to test}
}
\value{
logical
}
\description{
Tests for multiple label classes
}
\examples{
structure(c(1, 2, 3, 2, 10, 9),
labels = c(Unknown = 9, Refused = 10),
class = "haven_labelled"
) |> is.labelled()
}

View File

@ -1,38 +0,0 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/easy_redcap.R
\name{read_redcap_labelled}
\alias{read_redcap_labelled}
\title{REDCap read function to preserve field labels and all factor levels}
\usage{
read_redcap_labelled(
uri,
token,
records = NULL,
fields = NULL,
events = NULL,
forms = NULL,
split_forms = "all"
)
}
\arguments{
\item{uri}{REDCap database API uri}
\item{token}{API token}
\item{records}{records to download}
\item{fields}{fields to download}
\item{events}{events to download}
\item{forms}{forms to download}
\item{split_forms}{Whether to split "repeating" or "all" forms, default is
"all".}
}
\value{
data.frame or list
}
\description{
This works very much as `read_redcap_tables()` and might end up there
}

View File

@ -28,7 +28,14 @@ read_redcap_tables(
\item{forms}{forms to download}
\item{raw_or_label}{raw or label tags}
\item{raw_or_label}{raw or label tags. Can be
* "raw": Standard [REDCapR] method to get raw values.
* "label": Standard [REDCapR] method to get label values.
* "both": Get raw values with REDCap labels applied as labels. Use
[as_factor()] to format factors with original labels and use the
[gtsummary] package to easily get beautiful tables with original labels
from REDCap. Use [fct_drop()] to drop empty levels.}
\item{split_forms}{Whether to split "repeating" or "all" forms, default is
all.}

View File

@ -1,20 +0,0 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/ds2dd_detailed.R
\name{redcap_meta_default}
\alias{redcap_meta_default}
\title{Default column names of a REDCap data dictionary}
\usage{
redcap_meta_default(...)
}
\arguments{
\item{...}{ignored for now}
}
\value{
character vector
}
\description{
Default column names of a REDCap data dictionary
}
\examples{
dput(redcap_meta_default())
}

View File

@ -36,14 +36,14 @@ str(ds)
```{r}
ds|>
ds2dd_detailed()|>
ds2dd_detailed(metadata = names(REDCapCAST::redcapcast_meta))|>
purrr::pluck("data") |>
str()
```
```{r}
ds|>
ds2dd_detailed()|>
ds2dd_detailed(metadata = names(REDCapCAST::redcapcast_meta))|>
purrr::pluck("meta") |>
head(10)
```