Compare commits

...

3 Commits

33 changed files with 489 additions and 195 deletions

View File

@ -20,3 +20,5 @@ app
^\.lintr$
^CODE_OF_CONDUCT\.md$
^~/REDCapCAST/inst/shiny-examples/casting/rsconnect$
^inst/shiny-examples/casting/functions\.R$
^functions\.R$

2
.gitignore vendored
View File

@ -13,3 +13,5 @@ drafting
cran-comments.md
~/REDCapCAST/inst/shiny-examples/casting/rsconnect
~/REDCapCAST/inst/shiny-examples/casting/rsconnect/
inst/shiny-examples/casting/functions.R
functions.R

View File

@ -1,3 +0,0 @@
Version: 24.11.2
Date: 2024-11-22 12:08:45 UTC
SHA: a8f8fac245b06fef4a5e191d046bc4e9a345bf2b

View File

@ -1,6 +1,6 @@
Package: REDCapCAST
Title: REDCap Metadata Casting and Castellated Data Handling
Version: 24.11.3
Version: 24.11.4
Authors@R: c(
person("Andreas Gammelgaard", "Damsbo", email = "agdamsbo@clin.au.dk",
role = c("aut", "cre"),comment = c(ORCID = "0000-0002-7559-1154")),
@ -68,7 +68,6 @@ Collate:
'REDCap_split.r'
'as_factor.R'
'doc2dd.R'
'ds2dd.R'
'ds2dd_detailed.R'
'easy_redcap.R'
'export_redcap_instrument.R'

View File

@ -18,6 +18,7 @@ export(cast_data_overview)
export(cast_meta_overview)
export(char2choice)
export(char2cond)
export(clean_field_label)
export(clean_redcap_name)
export(compact_vec)
export(create_html_table)
@ -48,7 +49,9 @@ export(possibly_roman)
export(process_user_input)
export(read_input)
export(read_redcap_instrument)
export(read_redcap_labelled)
export(read_redcap_tables)
export(redcap_meta_default)
export(redcap_wider)
export(sanitize_split)
export(set_attr)

View File

@ -1,3 +1,9 @@
# REDCapCAST 24.11.4
The hosting on shinyapps.io has given a lot of trouble recently. Modyfied package structure a little around the `shiny_cast()`, to accommodate an alternative hosting approach with all package functions included in a script instead of requiring the package.
* read_readcap_labelled():
# REDCapCAST 24.11.3
* BUG: shiny_cast() fails to load as I missed loading REDCapCAST library in ui.r. Fixed. Tests would be great.

View File

@ -16,7 +16,8 @@
#' structure(c(1, 2, 3, 2, 10, 9),
#' labels = c(Unknown = 9, Refused = 10)
#' ) |>
#' as_factor() |> dput()
#' as_factor() |>
#' dput()
#'
#' structure(c(1, 2, 3, 2, 10, 9),
#' labels = c(Unknown = 9, Refused = 10),
@ -56,13 +57,13 @@ as_factor.numeric <- function(x, ...) {
#' @export
as_factor.character <- function(x, ...) {
labels <- get_attr(x)
if (possibly_roman(x)){
if (possibly_roman(x)) {
x <- factor(x)
} else {
x <- structure(
forcats::fct_inorder(x),
label = attr(x, "label", exact = TRUE)
)
x <- structure(
forcats::fct_inorder(x),
label = attr(x, "label", exact = TRUE)
)
}
set_attr(x, labels, overwrite = FALSE)
}
@ -202,8 +203,9 @@ named_levels <- function(data, label = "labels", na.label = NULL, na.value = 99)
)
}
# Handle empty factors
if (all_na(data)){
if (all_na(data)) {
d <- data.frame(
name = levels(data),
value = seq_along(levels(data))
@ -213,15 +215,19 @@ named_levels <- function(data, label = "labels", na.label = NULL, na.value = 99)
name = levels(data)[data],
value = as.numeric(data)
) |>
unique()
unique() |>
stats::na.omit()
}
## Applying labels
attr_l <- attr(x = data, which = label, exact = TRUE)
if (length(attr_l) != 0) {
if (all(names(attr_l) %in% d$name)){
if (all(names(attr_l) %in% d$name)) {
d$value[match(names(attr_l), d$name)] <- unname(attr_l)
}else {
} else if (all(d$name %in% names(attr_l)) && nrow(d) < length(attr_l)){
d <- data.frame(name = names(attr_l),
value=unname(attr_l))
} else {
d$name[match(attr_l, d$name)] <- names(attr_l)
d$value[match(names(attr_l), d$name)] <- unname(attr_l)
}
@ -244,13 +250,17 @@ named_levels <- function(data, label = "labels", na.label = NULL, na.value = 99)
#' @export
#'
#' @examples
#' sample(1:100,10) |> as.roman() |> possibly_roman()
#' sample(c(TRUE,FALSE),10,TRUE)|> possibly_roman()
#' rep(NA,10)|> possibly_roman()
possibly_roman <- function(data){
#' sample(1:100, 10) |>
#' as.roman() |>
#' possibly_roman()
#' sample(c(TRUE, FALSE), 10, TRUE) |> possibly_roman()
#' rep(NA, 10) |> possibly_roman()
possibly_roman <- function(data) {
# browser()
if (all(is.na(data))) return(FALSE)
identical(as.character(data),as.character(utils::as.roman(data)))
if (all(is.na(data))) {
return(FALSE)
}
identical(as.character(data), as.character(utils::as.roman(data)))
}
@ -287,13 +297,13 @@ possibly_roman <- function(data){
#' # as_factor() |>
#' # fct2num()
#'
#' v <- sample(6:19,20,TRUE) |> factor()
#' v <- sample(6:19, 20, TRUE) |> factor()
#' dput(v)
#' named_levels(v)
#' fct2num(v)
fct2num <- function(data) {
stopifnot(is.factor(data))
if (is.character(named_levels(data))){
if (is.character(named_levels(data))) {
values <- as.numeric(named_levels(data))
} else {
values <- named_levels(data)
@ -309,7 +319,7 @@ fct2num <- function(data) {
unname(out)
}
possibly_numeric <- function(data){
possibly_numeric <- function(data) {
length(stats::na.omit(suppressWarnings(as.numeric(names(data))))) ==
length(data)
}
@ -369,7 +379,6 @@ set_attr <- function(data, label, attr = NULL, overwrite = FALSE) {
label <- label[!names(label) %in% names(attributes(data))]
}
attributes(data) <- c(attributes(data), label)
} else {
attr(data, attr) <- label
}

View File

@ -1,89 +0,0 @@
utils::globalVariables(c("metadata_names"))
#' (DEPRECATED) Data set to data dictionary function
#'
#' @description
#' Creates a very basic data dictionary skeleton. Please see `ds2dd_detailed()`
#' for a more advanced function.
#'
#' @details
#' Migrated from stRoke ds2dd(). Fits better with the functionality of
#' 'REDCapCAST'.
#' @param ds data set
#' @param record.id name or column number of id variable, moved to first row of
#' data dictionary, character of integer. Default is "record_id".
#' @param form.name vector of form names, character string, length 1 or length
#' equal to number of variables. Default is "basis".
#' @param field.type vector of field types, character string, length 1 or length
#' equal to number of variables. Default is "text.
#' @param field.label vector of form names, character string, length 1 or length
#' equal to number of variables. Default is NULL and is then identical to field
#' names.
#' @param include.column.names Flag to give detailed output including new
#' column names for original data set for upload.
#' @param metadata Metadata column names. Default is the included
#' REDCapCAST::metadata_names.
#'
#' @return data.frame or list of data.frame and vector
#' @export
#'
#' @examples
#' redcapcast_data$record_id <- seq_len(nrow(redcapcast_data))
#' ds2dd(redcapcast_data, include.column.names=TRUE)
ds2dd <-
function(ds,
record.id = "record_id",
form.name = "basis",
field.type = "text",
field.label = NULL,
include.column.names = FALSE,
metadata = metadata_names) {
dd <- data.frame(matrix(ncol = length(metadata), nrow = ncol(ds)))
colnames(dd) <- metadata
if (is.character(record.id) && !record.id %in% colnames(ds)) {
stop("Provided record.id is not a variable name in provided data set.")
}
# renaming to lower case and substitute spaces with underscore
field.name <- gsub(" ", "_", tolower(colnames(ds)))
# handles both character and integer
colsel <-
colnames(ds) == colnames(ds[record.id])
if (summary(colsel)[3] != 1) {
stop("Provided record.id has to be or refer to a uniquely named column.")
}
dd[, "field_name"] <-
c(field.name[colsel], field.name[!colsel])
if (length(form.name) > 1 && length(form.name) != ncol(ds)) {
stop(
"Provided form.name should be of length 1 (value is reused) or equal
length as number of variables in data set."
)
}
dd[, "form_name"] <- form.name
if (length(field.type) > 1 && length(field.type) != ncol(ds)) {
stop(
"Provided field.type should be of length 1 (value is reused) or equal
length as number of variables in data set."
)
}
dd[, "field_type"] <- field.type
if (is.null(field.label)) {
dd[, "field_label"] <- dd[, "field_name"]
} else
dd[, "field_label"] <- field.label
if (include.column.names){
list("DataDictionary"=dd,"Column names"=field.name)
} else dd
}

View File

@ -98,6 +98,116 @@ hms2character <- function(data) {
dplyr::bind_cols()
}
#' Default column names of a REDCap data dictionary
#'
#' @param ... ignored for now
#'
#' @return character vector
#' @export
#'
#' @examples
#' dput(redcap_meta_default())
redcap_meta_default <- function(...) {
c(
"field_name", "form_name", "section_header", "field_type",
"field_label", "select_choices_or_calculations", "field_note",
"text_validation_type_or_show_slider_number", "text_validation_min",
"text_validation_max", "identifier", "branching_logic", "required_field",
"custom_alignment", "question_number", "matrix_group_name", "matrix_ranking",
"field_annotation"
)
}
#' (DEPRECATED) Data set to data dictionary function
#'
#' @description
#' Creates a very basic data dictionary skeleton. Please see `ds2dd_detailed()`
#' for a more advanced function.
#'
#' @details
#' Migrated from stRoke ds2dd(). Fits better with the functionality of
#' 'REDCapCAST'.
#' @param ds data set
#' @param record.id name or column number of id variable, moved to first row of
#' data dictionary, character of integer. Default is "record_id".
#' @param form.name vector of form names, character string, length 1 or length
#' equal to number of variables. Default is "basis".
#' @param field.type vector of field types, character string, length 1 or length
#' equal to number of variables. Default is "text.
#' @param field.label vector of form names, character string, length 1 or length
#' equal to number of variables. Default is NULL and is then identical to field
#' names.
#' @param include.column.names Flag to give detailed output including new
#' column names for original data set for upload.
#' @param metadata Metadata column names. Default is the included
#' REDCapCAST::redcap_meta_default.
#'
#' @return data.frame or list of data.frame and vector
#' @export
#'
#' @examples
#' redcapcast_data$record_id <- seq_len(nrow(redcapcast_data))
#' ds2dd(redcapcast_data, include.column.names=TRUE)
ds2dd <-
function(ds,
record.id = "record_id",
form.name = "basis",
field.type = "text",
field.label = NULL,
include.column.names = FALSE,
metadata = REDCapCAST::redcap_meta_default()
) {
dd <- data.frame(matrix(ncol = length(metadata), nrow = ncol(ds)))
colnames(dd) <- metadata
if (is.character(record.id) && !record.id %in% colnames(ds)) {
stop("Provided record.id is not a variable name in provided data set.")
}
# renaming to lower case and substitute spaces with underscore
field.name <- gsub(" ", "_", tolower(colnames(ds)))
# handles both character and integer
colsel <-
colnames(ds) == colnames(ds[record.id])
if (summary(colsel)[3] != 1) {
stop("Provided record.id has to be or refer to a uniquely named column.")
}
dd[, "field_name"] <-
c(field.name[colsel], field.name[!colsel])
if (length(form.name) > 1 && length(form.name) != ncol(ds)) {
stop(
"Provided form.name should be of length 1 (value is reused) or equal
length as number of variables in data set."
)
}
dd[, "form_name"] <- form.name
if (length(field.type) > 1 && length(field.type) != ncol(ds)) {
stop(
"Provided field.type should be of length 1 (value is reused) or equal
length as number of variables in data set."
)
}
dd[, "field_type"] <- field.type
if (is.null(field.label)) {
dd[, "field_label"] <- dd[, "field_name"]
} else
dd[, "field_label"] <- field.label
if (include.column.names){
list("DataDictionary"=dd,"Column names"=field.name)
} else dd
}
#' Extract data from stata file for data dictionary
#'
#' @details
@ -134,7 +244,7 @@ hms2character <- function(data) {
#' or attribute `factor.labels.attr` for haven_labelled data set (imported .dta
#' file with `haven::read_dta()`).
#' @param metadata redcap metadata headings. Default is
#' REDCapCAST:::metadata_names.
#' REDCapCAST::redcap_meta_default().
#' @param convert.logicals convert logicals to factor. Default is TRUE.
#'
#' @return list of length 2
@ -142,7 +252,8 @@ hms2character <- function(data) {
#'
#' @examples
#' ## Basic parsing with default options
#' REDCapCAST::redcapcast_data |>
#' requireNamespace("REDCapCAST")
#' redcapcast_data |>
#' dplyr::select(-dplyr::starts_with("redcap_")) |>
#' ds2dd_detailed()
#'
@ -175,15 +286,8 @@ ds2dd_detailed <- function(data,
field.label = NULL,
field.label.attr = "label",
field.validation = NULL,
metadata = names(REDCapCAST::redcapcast_meta),
metadata = REDCapCAST::redcap_meta_default(),
convert.logicals = TRUE) {
# Repair empty columns
# These where sometimes classed as factors or
# if (any(sapply(data,all_na))){
# data <- data |>
# ## Converts logical to factor, which overwrites attributes
# dplyr::mutate(dplyr::across(dplyr::where(all_na), as.character))
# }
if (convert.logicals) {
data <- data |>
@ -357,8 +461,8 @@ ds2dd_detailed <- function(data,
#' @export
#'
#' @examples
#' rep(NA,4) |> all_na()
all_na <- function(data){
#' rep(NA, 4) |> all_na()
all_na <- function(data) {
all(is.na(data))
}
@ -561,7 +665,7 @@ numchar2fct <- function(data, numeric.threshold = 6, character.throshold = 6) {
#' sort() |>
#' vec2choice()
vec2choice <- function(data) {
compact_vec(data,nm.sep = ", ",val.sep = " | ")
compact_vec(data, nm.sep = ", ", val.sep = " | ")
}
#' Compacting a vector of any length with or without names
@ -582,7 +686,7 @@ vec2choice <- function(data) {
#' 1:6 |> compact_vec()
#' "test" |> compact_vec()
#' sample(letters[1:9], 20, TRUE) |> compact_vec()
compact_vec <- function(data,nm.sep=": ",val.sep="; ") {
compact_vec <- function(data, nm.sep = ": ", val.sep = "; ") {
# browser()
if (all(is.na(data))) {
return(data)

View File

@ -40,3 +40,167 @@ easy_redcap <- function(project.name, widen.data = TRUE, uri, ...) {
out
}
#' REDCap read function to preserve field labels and all factor levels
#'
#' @description
#' This works very much as `read_redcap_tables()` and might end up there
#'
#'
#' @param uri REDCap database API uri
#' @param token API token
#' @param records records to download
#' @param fields fields to download
#' @param events events to download
#' @param forms forms to download
#' @param split_forms Whether to split "repeating" or "all" forms, default is
#' "all".
#'
#' @return data.frame or list
#' @export
#'
read_redcap_labelled <- function(uri,
token,
records = NULL,
fields = NULL,
events = NULL,
forms = NULL,
split_forms = "all") {
m <-
REDCapR::redcap_metadata_read(redcap_uri = uri, token = token)[["data"]]
# Tests
if (!is.null(fields)) {
fields_test <- fields %in% c(m$field_name, paste0(unique(m$form_name), "_complete"))
if (any(!fields_test)) {
print(paste0(
"The following field names are invalid: ",
paste(fields[!fields_test], collapse = ", "), "."
))
stop("Not all supplied field names are valid")
}
}
if (!is.null(forms)) {
forms_test <- forms %in% unique(m$form_name)
if (any(!forms_test)) {
print(paste0(
"The following form names are invalid: ",
paste(forms[!forms_test], collapse = ", "), "."
))
stop("Not all supplied form names are valid")
}
}
if (!is.null(events)) {
arm_event_inst <- REDCapR::redcap_event_instruments(
redcap_uri = uri,
token = token
)
event_test <- events %in% unique(arm_event_inst$data$unique_event_name)
if (any(!event_test)) {
print(paste0(
"The following event names are invalid: ",
paste(events[!event_test], collapse = ", "), "."
))
stop("Not all supplied event names are valid")
}
}
# Getting dataset
d <- REDCapR::redcap_read(
redcap_uri = uri,
token = token,
fields = fields,
events = events,
forms = forms,
records = records,
raw_or_label = "raw"
)[["data"]]
# Applying labels
d <- purrr::imap(d, \(.x, .i){
if (.i %in% m$field_name) {
# Does not handle checkboxes
out <- set_attr(.x,
label = clean_field_label(m$field_label[m$field_name == .i]),
attr = "label"
)
out
} else {
.x
}
}) |> dplyr::bind_cols()
d <- purrr::imap(d, \(.x, .i){
if (any(c("radio", "dropdown") %in% m$field_type[m$field_name == .i])) {
format_redcap_factor(.x, m$select_choices_or_calculations[m$field_name == .i])
} else {
.x
}
}) |> dplyr::bind_cols()
# Process repeat instrument naming
# Removes any extra characters other than a-z, 0-9 and "_", to mimic raw
# instrument names.
if ("redcap_repeat_instrument" %in% names(d)) {
d$redcap_repeat_instrument <- clean_redcap_name(d$redcap_repeat_instrument)
}
# Processing metadata to reflect focused dataset
m <- focused_metadata(m, names(d))
# Splitting
out <- REDCap_split(d,
m,
forms = split_forms,
primary_table_name = ""
)
sanitize_split(out)
}
#' Very simple function to remove rich text formatting from field label
#' and save the first paragraph ('<p>...</p>').
#'
#' @param data field label
#'
#' @return character vector
#' @export
#'
#' @examples
#' clean_field_label("<div class=\"rich-text-field-label\"><p>Fazekas score</p></div>")
clean_field_label <- function(data) {
out <- data |>
lapply(\(.x){
unlist(strsplit(.x, "</"))[1]
}) |>
lapply(\(.x){
splt <- unlist(strsplit(.x, ">"))
splt[length(splt)]
})
Reduce(c, out)
}
format_redcap_factor <- function(data, meta) {
lvls <- strsplit(meta, " | ", fixed = TRUE) |>
unlist() |>
lapply(\(.x){
splt <- unlist(strsplit(.x, ", "))
stats::setNames(splt[1], nm = paste(splt[-1], collapse = ", "))
}) |>
(\(.x){
Reduce(c, .x)
})()
set_attr(data, label = lvls, attr = "labels") |>
set_attr(data, label = "labelled", attr = "class") |>
as_factor()
}

View File

@ -17,7 +17,7 @@
#' @export
#'
#' @examples
#' #iris |>
#' # iris |>
#' # ds2dd_detailed(
#' # add.auto.id = TRUE,
#' # form.name = sample(c("b", "c"), size = 6, replace = TRUE, prob = rep(.5, 2))
@ -30,7 +30,7 @@
#' # export_redcap_instrument(.x,file=here::here(paste0(.i,Sys.Date(),".zip")))
#' # })
#'
#' #iris |>
#' # iris |>
#' # ds2dd_detailed(
#' # add.auto.id = TRUE
#' # ) |>
@ -38,18 +38,18 @@
#' # export_redcap_instrument(file=here::here(paste0("instrument",Sys.Date(),".zip")))
export_redcap_instrument <- function(data,
file,
force=FALSE,
force = FALSE,
record.id = "record_id") {
# Ensure form name is the same
if (force){
if (force) {
data$form_name <- data$form_name[1]
} else if (length(unique(data$form_name))!=1){
} else if (length(unique(data$form_name)) != 1) {
stop("Please provide metadata for a single form only. See examples for
ideas on exporting multiple instruments.")
}
if (!is.na(record.id) && record.id %in% data[["field_name"]]){
data <- data[-match(record.id,data[["field_name"]]),]
if (!is.na(record.id) && record.id %in% data[["field_name"]]) {
data <- data[-match(record.id, data[["field_name"]]), ]
}
temp_dir <- tempdir()
@ -82,6 +82,7 @@ export_redcap_instrument <- function(data,
#' @export
#'
#' @examples
#' \dontrun{
#' data <- iris |>
#' ds2dd_detailed(
#' add.auto.id = TRUE,
@ -100,9 +101,10 @@ export_redcap_instrument <- function(data,
#' setNames(glue::glue("{sample(x = c('a','b'),size = length(ncol(iris)),
#' replace=TRUE,prob = rep(x=.5,2))}__{names(iris)}")) |>
#' ds2dd_detailed(form.sep = "__")
#' # data |>
#' # purrr::pluck("meta") |>
#' # create_instrument_meta(record.id = FALSE)
#' data |>
#' purrr::pluck("meta") |>
#' create_instrument_meta(record.id = FALSE)
#' }
create_instrument_meta <- function(data,
dir = here::here(""),
record.id = TRUE) {

View File

@ -1,6 +1,6 @@
#' REDCap metadata from data base
#'
#' This metadata dataset from a REDCap database is for demonstrational purposes.
#' This metadata dataset from a REDCap database is for demonstration purposes.
#'
#' @format A data frame with 22 variables:
#' \describe{

View File

@ -7,9 +7,9 @@
# "matrix_ranking", "field_annotation"
# )
metadata_names <- REDCapR::redcap_metadata_read(
redcap_uri = keyring::key_get("DB_URI"),
token = keyring::key_get("cast_api")
)$data |> names()
usethis::use_data(metadata_names, overwrite = TRUE, internal = TRUE)
# metadata_names <- REDCapR::redcap_metadata_read(
# redcap_uri = keyring::key_get("DB_URI"),
# token = keyring::key_get("cast_api")
# )$data |> names()
#
# usethis::use_data(metadata_names, overwrite = TRUE, internal = TRUE)

View File

@ -12,4 +12,4 @@ redcapcast_data <- REDCapR::redcap_read(
usethis::use_data(redcapcast_data, overwrite = TRUE)
write.csv(redcapcast_data,here::here("data/redcapcast_data.csv"),row.names = FALSE)
# write.csv(redcapcast_data,here::here("data/redcapcast_data.csv"),row.names = FALSE)

View File

@ -5,12 +5,25 @@ library(haven)
library(readODS)
library(readr)
library(dplyr)
library(gt)
library(devtools)
if (!requireNamespace("REDCapCAST")) {
devtools::install_github("agdamsbo/REDCapCAST", quiet = TRUE, upgrade = "never")
install.packages("REDCapCAST")
}
library(REDCapCAST)
## Load merged files for shinyapps.io hosting
if (file.exists(here::here("functions.R"))) {
source(here::here("functions.R"))
}
ui <-
bslib::page(
theme = bslib::bs_theme(preset = "united"),
title = "REDCap database creator",
nav_bar_page()
)
server <- function(input, output, session) {
v <- shiny::reactiveValues(
@ -178,3 +191,5 @@ server <- function(input, output, session) {
# unlink("www",recursive = TRUE)
# })
}
shiny::shinyApp(ui = ui, server = server)

View File

@ -1,10 +0,0 @@
name: redcapcast-latest
title:
username: agdamsbo
account: agdamsbo
server: shinyapps.io
hostUrl: https://api.shinyapps.io/v1
appId: 13442058
bundleId: 9412341
url: https://agdamsbo.shinyapps.io/redcapcast-latest/
version: 1

View File

@ -5,6 +5,6 @@ account: agdamsbo
server: shinyapps.io
hostUrl: https://api.shinyapps.io/v1
appId: 11351429
bundleId: 9412329
bundleId: 9418747
url: https://agdamsbo.shinyapps.io/redcapcast/
version: 1

View File

@ -1,7 +0,0 @@
library(REDCapCAST)
ui <-
bslib::page(
theme = bslib::bs_theme(preset = "united"),
title = "REDCap database creator",
REDCapCAST::nav_bar_page()
)

View File

@ -4,7 +4,7 @@
\name{REDCapCAST-package}
\alias{REDCapCAST}
\alias{REDCapCAST-package}
\title{REDCapCAST: REDCap Castellated Data Handling and Metadata Casting}
\title{REDCapCAST: REDCap Metadata Casting and Castellated Data Handling}
\description{
\if{html}{\figure{logo.png}{options: style='float: right' alt='logo' width='120'}}

View File

@ -16,5 +16,5 @@ logical
Check if vector is all NA
}
\examples{
rep(NA,4) |> all_na()
rep(NA, 4) |> all_na()
}

View File

@ -65,7 +65,8 @@ c(1, 4, 3, "A", 7, 8, 1) |> as_factor()
structure(c(1, 2, 3, 2, 10, 9),
labels = c(Unknown = 9, Refused = 10)
) |>
as_factor() |> dput()
as_factor() |>
dput()
structure(c(1, 2, 3, 2, 10, 9),
labels = c(Unknown = 9, Refused = 10),

22
man/clean_field_label.Rd Normal file
View File

@ -0,0 +1,22 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/easy_redcap.R
\name{clean_field_label}
\alias{clean_field_label}
\title{Very simple function to remove rich text formatting from field label
and save the first paragraph ('<p>...</p>').}
\usage{
clean_field_label(data)
}
\arguments{
\item{data}{field label}
}
\value{
character vector
}
\description{
Very simple function to remove rich text formatting from field label
and save the first paragraph ('<p>...</p>').
}
\examples{
clean_field_label("<div class=\"rich-text-field-label\"><p>Fazekas score</p></div>")
}

View File

@ -26,6 +26,7 @@ function can be used to create (an) instrument(s) to add to a project in
production.
}
\examples{
\dontrun{
data <- iris |>
ds2dd_detailed(
add.auto.id = TRUE,
@ -44,7 +45,8 @@ iris |>
setNames(glue::glue("{sample(x = c('a','b'),size = length(ncol(iris)),
replace=TRUE,prob = rep(x=.5,2))}__{names(iris)}")) |>
ds2dd_detailed(form.sep = "__")
# data |>
# purrr::pluck("meta") |>
# create_instrument_meta(record.id = FALSE)
data |>
purrr::pluck("meta") |>
create_instrument_meta(record.id = FALSE)
}
}

View File

@ -1,5 +1,5 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/ds2dd.R
% Please edit documentation in R/ds2dd_detailed.R
\name{ds2dd}
\alias{ds2dd}
\title{(DEPRECATED) Data set to data dictionary function}
@ -11,7 +11,7 @@ ds2dd(
field.type = "text",
field.label = NULL,
include.column.names = FALSE,
metadata = metadata_names
metadata = REDCapCAST::redcap_meta_default()
)
}
\arguments{
@ -34,7 +34,7 @@ names.}
column names for original data set for upload.}
\item{metadata}{Metadata column names. Default is the included
REDCapCAST::metadata_names.}
REDCapCAST::redcap_meta_default.}
}
\value{
data.frame or list of data.frame and vector

View File

@ -15,7 +15,7 @@ ds2dd_detailed(
field.label = NULL,
field.label.attr = "label",
field.validation = NULL,
metadata = names(REDCapCAST::redcapcast_meta),
metadata = REDCapCAST::redcap_meta_default(),
convert.logicals = TRUE
)
}
@ -55,7 +55,7 @@ or attribute `factor.labels.attr` for haven_labelled data set (imported .dta
file with `haven::read_dta()`).}
\item{metadata}{redcap metadata headings. Default is
REDCapCAST:::metadata_names.}
REDCapCAST::redcap_meta_default().}
\item{convert.logicals}{convert logicals to factor. Default is TRUE.}
}
@ -76,7 +76,8 @@ Ensure, that the data set is formatted with as much information as possible.
}
\examples{
## Basic parsing with default options
REDCapCAST::redcapcast_data |>
requireNamespace("REDCapCAST")
redcapcast_data |>
dplyr::select(-dplyr::starts_with("redcap_")) |>
ds2dd_detailed()

View File

@ -27,7 +27,7 @@ function can be used to create (an) instrument(s) to add to a project in
production.
}
\examples{
#iris |>
# iris |>
# ds2dd_detailed(
# add.auto.id = TRUE,
# form.name = sample(c("b", "c"), size = 6, replace = TRUE, prob = rep(.5, 2))
@ -40,7 +40,7 @@ production.
# export_redcap_instrument(.x,file=here::here(paste0(.i,Sys.Date(),".zip")))
# })
#iris |>
# iris |>
# ds2dd_detailed(
# add.auto.id = TRUE
# ) |>

View File

@ -41,7 +41,7 @@ structure(c(1, 2, 3, 2, 10, 9),
# as_factor() |>
# fct2num()
v <- sample(6:19,20,TRUE) |> factor()
v <- sample(6:19, 20, TRUE) |> factor()
dput(v)
named_levels(v)
fct2num(v)

View File

@ -16,7 +16,9 @@ logical
Test if vector can be interpreted as roman numerals
}
\examples{
sample(1:100,10) |> as.roman() |> possibly_roman()
sample(c(TRUE,FALSE),10,TRUE)|> possibly_roman()
rep(NA,10)|> possibly_roman()
sample(1:100, 10) |>
as.roman() |>
possibly_roman()
sample(c(TRUE, FALSE), 10, TRUE) |> possibly_roman()
rep(NA, 10) |> possibly_roman()
}

View File

@ -0,0 +1,38 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/easy_redcap.R
\name{read_redcap_labelled}
\alias{read_redcap_labelled}
\title{REDCap read function to preserve field labels and all factor levels}
\usage{
read_redcap_labelled(
uri,
token,
records = NULL,
fields = NULL,
events = NULL,
forms = NULL,
split_forms = "all"
)
}
\arguments{
\item{uri}{REDCap database API uri}
\item{token}{API token}
\item{records}{records to download}
\item{fields}{fields to download}
\item{events}{events to download}
\item{forms}{forms to download}
\item{split_forms}{Whether to split "repeating" or "all" forms, default is
"all".}
}
\value{
data.frame or list
}
\description{
This works very much as `read_redcap_tables()` and might end up there
}

View File

@ -0,0 +1,20 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/ds2dd_detailed.R
\name{redcap_meta_default}
\alias{redcap_meta_default}
\title{Default column names of a REDCap data dictionary}
\usage{
redcap_meta_default(...)
}
\arguments{
\item{...}{ignored for now}
}
\value{
character vector
}
\description{
Default column names of a REDCap data dictionary
}
\examples{
dput(redcap_meta_default())
}

View File

@ -31,6 +31,6 @@ A data frame with 22 variables:
data(redcapcast_meta)
}
\description{
This metadata dataset from a REDCap database is for demonstrational purposes.
This metadata dataset from a REDCap database is for demonstration purposes.
}
\keyword{datasets}

View File

@ -1,9 +1,20 @@
mtcars$id <- seq_len(nrow(mtcars))
metadata_names <- function(...) {
c(
"field_name", "form_name", "section_header", "field_type",
"field_label", "select_choices_or_calculations", "field_note",
"text_validation_type_or_show_slider_number", "text_validation_min",
"text_validation_max", "identifier", "branching_logic", "required_field",
"custom_alignment", "question_number", "matrix_group_name", "matrix_ranking",
"field_annotation"
)
}
test_that("ds2dd gives desired output", {
expect_equal(ncol(ds2dd(mtcars, record.id = "id")), 18)
expect_s3_class(ds2dd(mtcars, record.id = "id"), "data.frame")
expect_s3_class(ds2dd(mtcars, record.id = 12), "data.frame")
expect_equal(ncol(ds2dd(mtcars, record.id = "id",metadata = metadata_names())), 18)
expect_s3_class(ds2dd(mtcars, record.id = "id",metadata = metadata_names()), "data.frame")
expect_s3_class(ds2dd(mtcars, record.id = 12,metadata = metadata_names()), "data.frame")
})
@ -11,19 +22,19 @@ test_that("ds2dd gives output with list of length two", {
expect_equal(length(ds2dd(
mtcars,
record.id = "id",
include.column.names = TRUE
include.column.names = TRUE,metadata = metadata_names()
)), 2)
})
test_that("ds2dd gives correct errors", {
expect_error(ds2dd(mtcars))
expect_error(ds2dd(mtcars, form.name = c("basis", "incl")))
expect_error(ds2dd(mtcars, field.type = c("text", "dropdown")))
expect_error(ds2dd(mtcars, field.label = c("Name", "Age")))
expect_error(ds2dd(mtcars,metadata = metadata_names()))
expect_error(ds2dd(mtcars, form.name = c("basis", "incl"),metadata = metadata_names()))
expect_error(ds2dd(mtcars, field.type = c("text", "dropdown"),metadata = metadata_names()))
expect_error(ds2dd(mtcars, field.label = c("Name", "Age"),metadata = metadata_names()))
})
test_that("ds2dd correctly renames", {
expect_equal(ncol(ds2dd(mtcars, record.id = "id")), 18)
expect_s3_class(ds2dd(mtcars, record.id = "id"), "data.frame")
expect_equal(ncol(ds2dd(mtcars, record.id = "id",metadata = metadata_names())), 18)
expect_s3_class(ds2dd(mtcars, record.id = "id",metadata = metadata_names()), "data.frame")
})

View File

@ -32,7 +32,7 @@ In the following I will try to come with a few suggestions on how to use these a
The first iteration of a dataset to data dictionary function is the `ds2dd()`, which creates a very basic data dictionary with all variables stored as text. This is sufficient for just storing old datasets/spreadsheets securely in REDCap.
```{r eval=TRUE}
```{r eval=FALSE}
d1 <- mtcars |>
dplyr::mutate(record_id = seq_len(dplyr::n())) |>
ds2dd()