fixing a bug when not exporting from the first instrument and pivoting to wide format

This commit is contained in:
Andreas Gammelgaard Damsbo 2025-03-07 16:01:12 +01:00
parent 821e4583dd
commit ff466c044c
No known key found for this signature in database
3 changed files with 75 additions and 9 deletions

View File

@ -1,3 +1,7 @@
# REDCapCAST 25.3.2
* FIX: exporting no fields from the first instrument in a REDCap database would throw an error from `tidyr::pivot_wider()` in `redcap_wider()`.
# REDCapCAST 25.3.1
* FIX: `as_factor()` now interprets empty variables with empty levels attribute as logicals to avoid returning factors with empty levels.

View File

@ -79,11 +79,35 @@ utils::globalVariables(c(
#' )
#' )
#' redcap_wider(list4)
#'
#' list5 <- list(
#' data.frame(
#' record_id = c(1, 2, 1, 2),
#' redcap_event_name = c("baseline", "baseline", "followup", "followup")
#' ),
#' data.frame(
#' record_id = c(1, 1, 1, 1, 2, 2, 2, 2),
#' redcap_event_name = c(
#' "baseline", "baseline", "followup", "followup",
#' "baseline", "baseline", "followup", "followup"
#' ),
#' redcap_repeat_instrument = "walk",
#' redcap_repeat_instance = c(1, 2, 1, 2, 1, 2, 1, 2),
#' dist = c(40, 32, 25, 33, 28, 24, 23, 36)
#' ),
#' data.frame(
#' record_id = c(1, 2),
#' redcap_event_name = c("baseline", "baseline"),
#' gender = c("male", "female")
#' )
#' )
#' redcap_wider(list5)
redcap_wider <-
function(data,
event.glue = "{.value}____{redcap_event_name}",
inst.glue = "{.value}____{redcap_repeat_instance}") {
# browser()
if (!is_repeated_longitudinal(data)) {
if (is.list(data)) {
if (length(data) == 1) {
@ -95,22 +119,37 @@ redcap_wider <-
out <- data
}
} else {
id.name <- do.call(c, lapply(data, names))[[1]]
## Cleaning instrument list to only include instruments holding other data
## than ID and generic columns
## This is to mitigate an issue when not exporting fields from the first
## instrument.
## Not taking this step would throw an error when pivoting.
instrument_names <- lapply(data, names)
id.name <- do.call(c, instrument_names)[[1]]
generic_names <- c(
id.name,
"redcap_event_name",
"redcap_repeat_instrument",
"redcap_repeat_instance"
)
semi_empty <- lapply(instrument_names,\(.x){
all(.x %in% generic_names)
}) |> unlist()
data <- data[!semi_empty]
l <- lapply(data, function(i) {
# browser()
rep_inst <- "redcap_repeat_instrument" %in% names(i)
if (rep_inst) {
k <- lapply(split(i, f = i[[id.name]]), function(j) {
cname <- colnames(j)
vals <-
cname[!cname %in% c(
id.name,
"redcap_event_name",
"redcap_repeat_instrument",
"redcap_repeat_instance"
)]
cname[!cname %in% generic_names]
s <- tidyr::pivot_wider(
j,
names_from = "redcap_repeat_instance",

View File

@ -83,4 +83,27 @@ list4 <- list(
)
)
redcap_wider(list4)
list5 <- list(
data.frame(
record_id = c(1, 2, 1, 2),
redcap_event_name = c("baseline", "baseline", "followup", "followup")
),
data.frame(
record_id = c(1, 1, 1, 1, 2, 2, 2, 2),
redcap_event_name = c(
"baseline", "baseline", "followup", "followup",
"baseline", "baseline", "followup", "followup"
),
redcap_repeat_instrument = "walk",
redcap_repeat_instance = c(1, 2, 1, 2, 1, 2, 1, 2),
dist = c(40, 32, 25, 33, 28, 24, 23, 36)
),
data.frame(
record_id = c(1, 2),
redcap_event_name = c("baseline", "baseline"),
gender = c("male", "female")
)
)
redcap_wider(list5)
}