all data parsing and formatting has been seperated in individual functions

This commit is contained in:
Andreas Gammelgaard Damsbo 2024-11-18 14:40:32 +01:00
parent 4911d4dbc8
commit ea08a2066f
No known key found for this signature in database
7 changed files with 362 additions and 85 deletions

View File

@ -135,18 +135,12 @@ hms2character <- function(data) {
#' file with `haven::read_dta()`).
#' @param metadata redcap metadata headings. Default is
#' REDCapCAST:::metadata_names.
#' @param validate.time Flag to validate guessed time columns
#' @param time.var.sel.pos Positive selection regex string passed to
#' `gues_time_only_filter()` as sel.pos.
#' @param time.var.sel.neg Negative selection regex string passed to
#' `gues_time_only_filter()` as sel.neg.
#'
#' @return list of length 2
#' @export
#'
#' @examples
#' data <- REDCapCAST::redcapcast_data
#' data |> ds2dd_detailed(validate.time = TRUE)
#' data |> ds2dd_detailed()
#' iris |> ds2dd_detailed(add.auto.id = TRUE)
#' iris |>
@ -172,10 +166,7 @@ ds2dd_detailed <- function(data,
field.label = NULL,
field.label.attr = "label",
field.validation = NULL,
metadata = names(REDCapCAST::redcapcast_meta),
validate.time = FALSE,
time.var.sel.pos = "[Tt]i[d(me)]",
time.var.sel.neg = "[Dd]at[eo]") {
metadata = names(REDCapCAST::redcapcast_meta)) {
## Handles the odd case of no id column present
if (add.auto.id) {
data <- dplyr::tibble(
@ -185,43 +176,6 @@ ds2dd_detailed <- function(data,
message("A default id column has been added")
}
if (validate.time) {
return(data |> guess_time_only_filter(validate = TRUE))
}
if (lapply(data, haven::is.labelled) |> (\(x)do.call(c, x))() |> any()) {
message("Data seems to be imported with haven from a Stata (.dta) file and
will be treated as such.")
data.source <- "dta"
} else {
data.source <- ""
}
## data classes
### Only keeps the first class, as time fields (POSIXct/POSIXt) has two
### classes
if (data.source == "dta") {
data_classes <-
data |>
haven::as_factor() |>
time_only_correction(
sel.pos = time.var.sel.pos,
sel.neg = time.var.sel.neg
) |>
lapply(\(x)class(x)[1]) |>
(\(x)do.call(c, x))()
} else {
data_classes <-
data |>
time_only_correction(
sel.pos = time.var.sel.pos,
sel.neg = time.var.sel.neg
) |>
lapply(\(x)class(x)[1]) |>
(\(x)do.call(c, x))()
}
## ---------------------------------------
## Building the data dictionary
## ---------------------------------------
@ -240,12 +194,12 @@ ds2dd_detailed <- function(data,
## form.sep should be unique, but handles re-occuring pattern (by only considering first or last) and form.prefix defines if form is prefix or suffix
## The other split part is used as field names
if (form.prefix){
dd$form_name <- clean_redcap_name(Reduce(c,lapply(parts,\(.x) .x[[1]])))
dd$field_name <- Reduce(c,lapply(parts,\(.x) paste(.x[seq_len(length(.x))[-1]],collapse=form.sep)))
if (form.prefix) {
dd$form_name <- clean_redcap_name(Reduce(c, lapply(parts, \(.x) .x[[1]])))
dd$field_name <- Reduce(c, lapply(parts, \(.x) paste(.x[seq_len(length(.x))[-1]], collapse = form.sep)))
} else {
dd$form_name <- clean_redcap_name(Reduce(c,lapply(parts,\(.x) .x[[length(.x)]])))
dd$field_name <- Reduce(c,lapply(parts,\(.x) paste(.x[seq_len(length(.x)-1)],collapse=form.sep)))
dd$form_name <- clean_redcap_name(Reduce(c, lapply(parts, \(.x) .x[[length(.x)]])))
dd$field_name <- Reduce(c, lapply(parts, \(.x) paste(.x[seq_len(length(.x) - 1)], collapse = form.sep)))
}
} else {
dd$form_name <- "data"
@ -269,17 +223,16 @@ ds2dd_detailed <- function(data,
## field_label
if (is.null(field.label)) {
if (data.source == "dta") {
dd$field_label <- data |>
lapply(function(x) {
if (haven::is.labelled(x)) {
attributes(x)[[field.label.attr]]
att <- haven_all_levels(x)
names(att)
} else {
NA
}
}) |>
(\(x)do.call(c, x))()
}
dd <-
dd |> dplyr::mutate(field_label = dplyr::if_else(is.na(field_label),
@ -294,6 +247,8 @@ ds2dd_detailed <- function(data,
}
data_classes <- do.call(c, lapply(data, \(.x)class(.x)[1]))
## field_type
if (is.null(field.type)) {
@ -312,7 +267,6 @@ ds2dd_detailed <- function(data,
}
## validation
if (is.null(field.validation)) {
dd <-
dd |> dplyr::mutate(
@ -336,15 +290,13 @@ ds2dd_detailed <- function(data,
}
}
## choices
if (data.source == "dta") {
if (any(do.call(c, lapply(data, haven::is.labelled)))) {
factor_levels <- data |>
lapply(function(x) {
if (haven::is.labelled(x)) {
att <- attributes(x)$labels
att <- haven_all_levels(x)
paste(paste(att, names(att), sep = ", "), collapse = " | ")
} else {
NA
@ -383,16 +335,75 @@ ds2dd_detailed <- function(data,
list(
data = data |>
time_only_correction(
sel.pos = time.var.sel.pos,
sel.neg = time.var.sel.neg
) |>
hms2character() |>
stats::setNames(dd$field_name),
meta = dd
)
}
#' Finish incomplete haven attributes substituting missings with values
#'
#' @param data haven labelled variable
#'
#' @return named vector
#' @export
#'
#' @examples
#' ds <- structure(c(1, 2, 3, 2, 10, 9),
#' labels = c(Unknown = 9, Refused = 10),
#' class = "haven_labelled"
#' )
#' ds |> haven_all_levels()
haven_all_levels <- function(data) {
stopifnot(haven::is.labelled(data))
if (length(attributes(data)$labels) == length(unique(data))) {
out <- attributes(data)$labels
} else {
att <- attributes(data)$labels
out <- c(unique(data[!data %in% att]), att) |>
stats::setNames(c(unique(data[!data %in% att]), names(att)))
}
out
}
#' Guess time variables based on naming pattern
#'
#' @description
#' This is for repairing data with time variables with appended "1970-01-01"
#'
#'
#' @param data data.frame or tibble
#' @param validate.time Flag to validate guessed time columns
#' @param time.var.sel.pos Positive selection regex string passed to
#' `gues_time_only_filter()` as sel.pos.
#' @param time.var.sel.neg Negative selection regex string passed to
#' `gues_time_only_filter()` as sel.neg.
#'
#' @return data.frame or tibble
#' @export
#'
#' @examples
#' redcapcast_data |> guess_time_only(validate.time = TRUE)
guess_time_only <- function(data,
validate.time = FALSE,
time.var.sel.pos = "[Tt]i[d(me)]",
time.var.sel.neg = "[Dd]at[eo]") {
if (validate.time) {
return(data |> guess_time_only_filter(validate = TRUE))
}
### Only keeps the first class, as time fields (POSIXct/POSIXt) has two
### classes
data |> time_only_correction(
sel.pos = time.var.sel.pos,
sel.neg = time.var.sel.neg
)
}
### Completion
#' Completion marking based on completed upload
#'
@ -413,3 +424,127 @@ mark_complete <- function(upload, ls) {
) |>
stats::setNames(c(names(data)[1], paste0(forms, "_complete")))
}
#' Helper to auto-parse un-formatted data with haven and readr
#'
#' @param data data.frame or tibble
#' @param guess_type logical to guess type with readr
#' @param col_types specify col_types using readr semantics. Ignored if guess_type is TRUE
#' @param locale option to specify locale. Defaults to readr::default_locale().
#' @param ignore.vars specify column names of columns to ignore when parsing
#' @param ... ignored
#'
#' @return data.frame or tibble
#' @export
#'
#' @examples
#' mtcars |>
#' parse_data() |>
#' str()
parse_data <- function(data,
guess_type = TRUE,
col_types = NULL,
locale = readr::default_locale(),
ignore.vars = "cpr",
...) {
if (any(ignore.vars %in% names(data))) {
ignored <- data[ignore.vars]
} else {
ignored <- NULL
}
## Parses haven data by applying labels as factors in case of any
if (do.call(c, lapply(data, (\(x)inherits(x, "haven_labelled")))) |> any()) {
data <- data |>
haven::as_factor()
}
## Applying readr cols
if (is.null(col_types) && guess_type) {
if (do.call(c, lapply(data, is.character)) |> any()) {
data <- data |> readr::type_convert(
locale = locale,
col_types = readr::cols(.default = readr::col_guess())
)
}
} else {
data <- data |> readr::type_convert(
locale = locale,
col_types = readr::cols(col_types)
)
}
if (!is.null(ignored)) {
data[ignore.vars] <- ignored
}
data
}
#' Convert vector to factor based on threshold of number of unique levels
#'
#' @description
#' This is a wrapper of forcats::as_factor, which sorts numeric vectors before
#' factoring, but levels character vectors in order of appearance.
#'
#'
#' @param data vector or data.frame column
#' @param unique.n threshold to convert class to factor
#'
#' @return vector
#' @export
#' @importFrom forcats as_factor
#'
#' @examples
#' sample(seq_len(4), 20, TRUE) |>
#' var2fct(6) |>
#' summary()
#' sample(letters, 20) |>
#' var2fct(6) |>
#' summary()
#' sample(letters[1:4], 20, TRUE) |> var2fct(6)
var2fct <- function(data, unique.n) {
if (length(unique(data)) <= unique.n) {
forcats::as_factor(data)
} else {
data
}
}
#' Applying var2fct across data set
#'
#' @description
#' Individual thresholds for character and numeric columns
#'
#' @param data dataset. data.frame or tibble
#' @param numeric.threshold threshold for var2fct for numeric columns. Default
#' is 6.
#' @param character.throshold threshold for var2fct for character columns.
#' Default is 6.
#'
#' @return data.frame or tibble
#' @export
#'
#' @examples
#' mtcars |> str()
#' mtcars |>
#' numchar2fct(numeric.threshold = 6) |>
#' str()
numchar2fct <- function(data, numeric.threshold = 6, character.throshold = 6) {
data |>
dplyr::mutate(
dplyr::across(
dplyr::where(is.numeric),
\(.x){
var2fct(data = .x, unique.n = numeric.threshold)
}
),
dplyr::across(
dplyr::where(is.character),
\(.x){
var2fct(data = .x, unique.n = character.throshold)
}
)
)
}

View File

@ -15,10 +15,7 @@ ds2dd_detailed(
field.label = NULL,
field.label.attr = "label",
field.validation = NULL,
metadata = names(REDCapCAST::redcapcast_meta),
validate.time = FALSE,
time.var.sel.pos = "[Tt]i[d(me)]",
time.var.sel.neg = "[Dd]at[eo]"
metadata = names(REDCapCAST::redcapcast_meta)
)
}
\arguments{
@ -58,14 +55,6 @@ file with `haven::read_dta()`).}
\item{metadata}{redcap metadata headings. Default is
REDCapCAST:::metadata_names.}
\item{validate.time}{Flag to validate guessed time columns}
\item{time.var.sel.pos}{Positive selection regex string passed to
`gues_time_only_filter()` as sel.pos.}
\item{time.var.sel.neg}{Negative selection regex string passed to
`gues_time_only_filter()` as sel.neg.}
}
\value{
list of length 2
@ -84,7 +73,6 @@ Ensure, that the data set is formatted with as much information as possible.
}
\examples{
data <- REDCapCAST::redcapcast_data
data |> ds2dd_detailed(validate.time = TRUE)
data |> ds2dd_detailed()
iris |> ds2dd_detailed(add.auto.id = TRUE)
iris |>

33
man/guess_time_only.Rd Normal file
View File

@ -0,0 +1,33 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/ds2dd_detailed.R
\name{guess_time_only}
\alias{guess_time_only}
\title{Guess time variables based on naming pattern}
\usage{
guess_time_only(
data,
validate.time = FALSE,
time.var.sel.pos = "[Tt]i[d(me)]",
time.var.sel.neg = "[Dd]at[eo]"
)
}
\arguments{
\item{data}{data.frame or tibble}
\item{validate.time}{Flag to validate guessed time columns}
\item{time.var.sel.pos}{Positive selection regex string passed to
`gues_time_only_filter()` as sel.pos.}
\item{time.var.sel.neg}{Negative selection regex string passed to
`gues_time_only_filter()` as sel.neg.}
}
\value{
data.frame or tibble
}
\description{
This is for repairing data with time variables with appended "1970-01-01"
}
\examples{
redcapcast_data |> guess_time_only(validate.time = TRUE)
}

24
man/haven_all_levels.Rd Normal file
View File

@ -0,0 +1,24 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/ds2dd_detailed.R
\name{haven_all_levels}
\alias{haven_all_levels}
\title{Finish incomplete haven attributes substituting missings with values}
\usage{
haven_all_levels(data)
}
\arguments{
\item{data}{haven labelled variable}
}
\value{
named vector
}
\description{
Finish incomplete haven attributes substituting missings with values
}
\examples{
ds <- structure(c(1, 2, 3, 2, 10, 9),
labels = c(Unknown = 9, Refused = 10),
class = "haven_labelled"
)
ds |> haven_all_levels()
}

29
man/numchar2fct.Rd Normal file
View File

@ -0,0 +1,29 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/ds2dd_detailed.R
\name{numchar2fct}
\alias{numchar2fct}
\title{Applying var2fct across data set}
\usage{
numchar2fct(data, numeric.threshold = 6, character.throshold = 6)
}
\arguments{
\item{data}{dataset. data.frame or tibble}
\item{numeric.threshold}{threshold for var2fct for numeric columns. Default
is 6.}
\item{character.throshold}{threshold for var2fct for character columns.
Default is 6.}
}
\value{
data.frame or tibble
}
\description{
Individual thresholds for character and numeric columns
}
\examples{
mtcars |> str()
mtcars |>
numchar2fct(numeric.threshold = 6) |>
str()
}

39
man/parse_data.Rd Normal file
View File

@ -0,0 +1,39 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/ds2dd_detailed.R
\name{parse_data}
\alias{parse_data}
\title{Helper to auto-parse un-formatted data with haven and readr}
\usage{
parse_data(
data,
guess_type = TRUE,
col_types = NULL,
locale = readr::default_locale(),
ignore.vars = "cpr",
...
)
}
\arguments{
\item{data}{data.frame or tibble}
\item{guess_type}{logical to guess type with readr}
\item{col_types}{specify col_types using readr semantics. Ignored if guess_type is TRUE}
\item{locale}{option to specify locale. Defaults to readr::default_locale().}
\item{ignore.vars}{specify column names of columns to ignore when parsing}
\item{...}{ignored}
}
\value{
data.frame or tibble
}
\description{
Helper to auto-parse un-formatted data with haven and readr
}
\examples{
mtcars |>
parse_data() |>
str()
}

29
man/var2fct.Rd Normal file
View File

@ -0,0 +1,29 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/ds2dd_detailed.R
\name{var2fct}
\alias{var2fct}
\title{Convert vector to factor based on threshold of number of unique levels}
\usage{
var2fct(data, unique.n)
}
\arguments{
\item{data}{vector or data.frame column}
\item{unique.n}{threshold to convert class to factor}
}
\value{
vector
}
\description{
This is a wrapper of forcats::as_factor, which sorts numeric vectors before
factoring, but levels character vectors in order of appearance.
}
\examples{
sample(seq_len(4), 20, TRUE) |>
var2fct(6) |>
summary()
sample(letters, 20) |>
var2fct(6) |>
summary()
sample(letters[1:4], 20, TRUE) |> var2fct(6)
}