mirror of
https://github.com/agdamsbo/REDCapCAST.git
synced 2024-11-22 05:20:23 +01:00
all data parsing and formatting has been seperated in individual functions
This commit is contained in:
parent
4911d4dbc8
commit
ea08a2066f
@ -135,18 +135,12 @@ hms2character <- function(data) {
|
||||
#' file with `haven::read_dta()`).
|
||||
#' @param metadata redcap metadata headings. Default is
|
||||
#' REDCapCAST:::metadata_names.
|
||||
#' @param validate.time Flag to validate guessed time columns
|
||||
#' @param time.var.sel.pos Positive selection regex string passed to
|
||||
#' `gues_time_only_filter()` as sel.pos.
|
||||
#' @param time.var.sel.neg Negative selection regex string passed to
|
||||
#' `gues_time_only_filter()` as sel.neg.
|
||||
#'
|
||||
#' @return list of length 2
|
||||
#' @export
|
||||
#'
|
||||
#' @examples
|
||||
#' data <- REDCapCAST::redcapcast_data
|
||||
#' data |> ds2dd_detailed(validate.time = TRUE)
|
||||
#' data |> ds2dd_detailed()
|
||||
#' iris |> ds2dd_detailed(add.auto.id = TRUE)
|
||||
#' iris |>
|
||||
@ -172,10 +166,7 @@ ds2dd_detailed <- function(data,
|
||||
field.label = NULL,
|
||||
field.label.attr = "label",
|
||||
field.validation = NULL,
|
||||
metadata = names(REDCapCAST::redcapcast_meta),
|
||||
validate.time = FALSE,
|
||||
time.var.sel.pos = "[Tt]i[d(me)]",
|
||||
time.var.sel.neg = "[Dd]at[eo]") {
|
||||
metadata = names(REDCapCAST::redcapcast_meta)) {
|
||||
## Handles the odd case of no id column present
|
||||
if (add.auto.id) {
|
||||
data <- dplyr::tibble(
|
||||
@ -185,43 +176,6 @@ ds2dd_detailed <- function(data,
|
||||
message("A default id column has been added")
|
||||
}
|
||||
|
||||
if (validate.time) {
|
||||
return(data |> guess_time_only_filter(validate = TRUE))
|
||||
}
|
||||
|
||||
if (lapply(data, haven::is.labelled) |> (\(x)do.call(c, x))() |> any()) {
|
||||
message("Data seems to be imported with haven from a Stata (.dta) file and
|
||||
will be treated as such.")
|
||||
data.source <- "dta"
|
||||
} else {
|
||||
data.source <- ""
|
||||
}
|
||||
|
||||
## data classes
|
||||
|
||||
### Only keeps the first class, as time fields (POSIXct/POSIXt) has two
|
||||
### classes
|
||||
if (data.source == "dta") {
|
||||
data_classes <-
|
||||
data |>
|
||||
haven::as_factor() |>
|
||||
time_only_correction(
|
||||
sel.pos = time.var.sel.pos,
|
||||
sel.neg = time.var.sel.neg
|
||||
) |>
|
||||
lapply(\(x)class(x)[1]) |>
|
||||
(\(x)do.call(c, x))()
|
||||
} else {
|
||||
data_classes <-
|
||||
data |>
|
||||
time_only_correction(
|
||||
sel.pos = time.var.sel.pos,
|
||||
sel.neg = time.var.sel.neg
|
||||
) |>
|
||||
lapply(\(x)class(x)[1]) |>
|
||||
(\(x)do.call(c, x))()
|
||||
}
|
||||
|
||||
## ---------------------------------------
|
||||
## Building the data dictionary
|
||||
## ---------------------------------------
|
||||
@ -269,17 +223,16 @@ ds2dd_detailed <- function(data,
|
||||
## field_label
|
||||
|
||||
if (is.null(field.label)) {
|
||||
if (data.source == "dta") {
|
||||
dd$field_label <- data |>
|
||||
lapply(function(x) {
|
||||
if (haven::is.labelled(x)) {
|
||||
attributes(x)[[field.label.attr]]
|
||||
att <- haven_all_levels(x)
|
||||
names(att)
|
||||
} else {
|
||||
NA
|
||||
}
|
||||
}) |>
|
||||
(\(x)do.call(c, x))()
|
||||
}
|
||||
|
||||
dd <-
|
||||
dd |> dplyr::mutate(field_label = dplyr::if_else(is.na(field_label),
|
||||
@ -294,6 +247,8 @@ ds2dd_detailed <- function(data,
|
||||
}
|
||||
|
||||
|
||||
data_classes <- do.call(c, lapply(data, \(.x)class(.x)[1]))
|
||||
|
||||
## field_type
|
||||
|
||||
if (is.null(field.type)) {
|
||||
@ -312,7 +267,6 @@ ds2dd_detailed <- function(data,
|
||||
}
|
||||
|
||||
## validation
|
||||
|
||||
if (is.null(field.validation)) {
|
||||
dd <-
|
||||
dd |> dplyr::mutate(
|
||||
@ -336,15 +290,13 @@ ds2dd_detailed <- function(data,
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
## choices
|
||||
|
||||
if (data.source == "dta") {
|
||||
if (any(do.call(c, lapply(data, haven::is.labelled)))) {
|
||||
factor_levels <- data |>
|
||||
lapply(function(x) {
|
||||
if (haven::is.labelled(x)) {
|
||||
att <- attributes(x)$labels
|
||||
att <- haven_all_levels(x)
|
||||
paste(paste(att, names(att), sep = ", "), collapse = " | ")
|
||||
} else {
|
||||
NA
|
||||
@ -383,16 +335,75 @@ ds2dd_detailed <- function(data,
|
||||
|
||||
list(
|
||||
data = data |>
|
||||
time_only_correction(
|
||||
sel.pos = time.var.sel.pos,
|
||||
sel.neg = time.var.sel.neg
|
||||
) |>
|
||||
hms2character() |>
|
||||
stats::setNames(dd$field_name),
|
||||
meta = dd
|
||||
)
|
||||
}
|
||||
|
||||
#' Finish incomplete haven attributes substituting missings with values
|
||||
#'
|
||||
#' @param data haven labelled variable
|
||||
#'
|
||||
#' @return named vector
|
||||
#' @export
|
||||
#'
|
||||
#' @examples
|
||||
#' ds <- structure(c(1, 2, 3, 2, 10, 9),
|
||||
#' labels = c(Unknown = 9, Refused = 10),
|
||||
#' class = "haven_labelled"
|
||||
#' )
|
||||
#' ds |> haven_all_levels()
|
||||
haven_all_levels <- function(data) {
|
||||
stopifnot(haven::is.labelled(data))
|
||||
if (length(attributes(data)$labels) == length(unique(data))) {
|
||||
out <- attributes(data)$labels
|
||||
} else {
|
||||
att <- attributes(data)$labels
|
||||
out <- c(unique(data[!data %in% att]), att) |>
|
||||
stats::setNames(c(unique(data[!data %in% att]), names(att)))
|
||||
}
|
||||
out
|
||||
}
|
||||
|
||||
|
||||
#' Guess time variables based on naming pattern
|
||||
#'
|
||||
#' @description
|
||||
#' This is for repairing data with time variables with appended "1970-01-01"
|
||||
#'
|
||||
#'
|
||||
#' @param data data.frame or tibble
|
||||
#' @param validate.time Flag to validate guessed time columns
|
||||
#' @param time.var.sel.pos Positive selection regex string passed to
|
||||
#' `gues_time_only_filter()` as sel.pos.
|
||||
#' @param time.var.sel.neg Negative selection regex string passed to
|
||||
#' `gues_time_only_filter()` as sel.neg.
|
||||
#'
|
||||
#' @return data.frame or tibble
|
||||
#' @export
|
||||
#'
|
||||
#' @examples
|
||||
#' redcapcast_data |> guess_time_only(validate.time = TRUE)
|
||||
guess_time_only <- function(data,
|
||||
validate.time = FALSE,
|
||||
time.var.sel.pos = "[Tt]i[d(me)]",
|
||||
time.var.sel.neg = "[Dd]at[eo]") {
|
||||
if (validate.time) {
|
||||
return(data |> guess_time_only_filter(validate = TRUE))
|
||||
}
|
||||
|
||||
### Only keeps the first class, as time fields (POSIXct/POSIXt) has two
|
||||
### classes
|
||||
data |> time_only_correction(
|
||||
sel.pos = time.var.sel.pos,
|
||||
sel.neg = time.var.sel.neg
|
||||
)
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
### Completion
|
||||
#' Completion marking based on completed upload
|
||||
#'
|
||||
@ -413,3 +424,127 @@ mark_complete <- function(upload, ls) {
|
||||
) |>
|
||||
stats::setNames(c(names(data)[1], paste0(forms, "_complete")))
|
||||
}
|
||||
|
||||
|
||||
#' Helper to auto-parse un-formatted data with haven and readr
|
||||
#'
|
||||
#' @param data data.frame or tibble
|
||||
#' @param guess_type logical to guess type with readr
|
||||
#' @param col_types specify col_types using readr semantics. Ignored if guess_type is TRUE
|
||||
#' @param locale option to specify locale. Defaults to readr::default_locale().
|
||||
#' @param ignore.vars specify column names of columns to ignore when parsing
|
||||
#' @param ... ignored
|
||||
#'
|
||||
#' @return data.frame or tibble
|
||||
#' @export
|
||||
#'
|
||||
#' @examples
|
||||
#' mtcars |>
|
||||
#' parse_data() |>
|
||||
#' str()
|
||||
parse_data <- function(data,
|
||||
guess_type = TRUE,
|
||||
col_types = NULL,
|
||||
locale = readr::default_locale(),
|
||||
ignore.vars = "cpr",
|
||||
...) {
|
||||
if (any(ignore.vars %in% names(data))) {
|
||||
ignored <- data[ignore.vars]
|
||||
} else {
|
||||
ignored <- NULL
|
||||
}
|
||||
|
||||
## Parses haven data by applying labels as factors in case of any
|
||||
if (do.call(c, lapply(data, (\(x)inherits(x, "haven_labelled")))) |> any()) {
|
||||
data <- data |>
|
||||
haven::as_factor()
|
||||
}
|
||||
|
||||
## Applying readr cols
|
||||
if (is.null(col_types) && guess_type) {
|
||||
if (do.call(c, lapply(data, is.character)) |> any()) {
|
||||
data <- data |> readr::type_convert(
|
||||
locale = locale,
|
||||
col_types = readr::cols(.default = readr::col_guess())
|
||||
)
|
||||
}
|
||||
} else {
|
||||
data <- data |> readr::type_convert(
|
||||
locale = locale,
|
||||
col_types = readr::cols(col_types)
|
||||
)
|
||||
}
|
||||
|
||||
if (!is.null(ignored)) {
|
||||
data[ignore.vars] <- ignored
|
||||
}
|
||||
|
||||
data
|
||||
}
|
||||
|
||||
#' Convert vector to factor based on threshold of number of unique levels
|
||||
#'
|
||||
#' @description
|
||||
#' This is a wrapper of forcats::as_factor, which sorts numeric vectors before
|
||||
#' factoring, but levels character vectors in order of appearance.
|
||||
#'
|
||||
#'
|
||||
#' @param data vector or data.frame column
|
||||
#' @param unique.n threshold to convert class to factor
|
||||
#'
|
||||
#' @return vector
|
||||
#' @export
|
||||
#' @importFrom forcats as_factor
|
||||
#'
|
||||
#' @examples
|
||||
#' sample(seq_len(4), 20, TRUE) |>
|
||||
#' var2fct(6) |>
|
||||
#' summary()
|
||||
#' sample(letters, 20) |>
|
||||
#' var2fct(6) |>
|
||||
#' summary()
|
||||
#' sample(letters[1:4], 20, TRUE) |> var2fct(6)
|
||||
var2fct <- function(data, unique.n) {
|
||||
if (length(unique(data)) <= unique.n) {
|
||||
forcats::as_factor(data)
|
||||
} else {
|
||||
data
|
||||
}
|
||||
}
|
||||
|
||||
#' Applying var2fct across data set
|
||||
#'
|
||||
#' @description
|
||||
#' Individual thresholds for character and numeric columns
|
||||
#'
|
||||
#' @param data dataset. data.frame or tibble
|
||||
#' @param numeric.threshold threshold for var2fct for numeric columns. Default
|
||||
#' is 6.
|
||||
#' @param character.throshold threshold for var2fct for character columns.
|
||||
#' Default is 6.
|
||||
#'
|
||||
#' @return data.frame or tibble
|
||||
#' @export
|
||||
#'
|
||||
#' @examples
|
||||
#' mtcars |> str()
|
||||
#' mtcars |>
|
||||
#' numchar2fct(numeric.threshold = 6) |>
|
||||
#' str()
|
||||
numchar2fct <- function(data, numeric.threshold = 6, character.throshold = 6) {
|
||||
data |>
|
||||
dplyr::mutate(
|
||||
dplyr::across(
|
||||
dplyr::where(is.numeric),
|
||||
\(.x){
|
||||
var2fct(data = .x, unique.n = numeric.threshold)
|
||||
}
|
||||
),
|
||||
dplyr::across(
|
||||
dplyr::where(is.character),
|
||||
\(.x){
|
||||
var2fct(data = .x, unique.n = character.throshold)
|
||||
}
|
||||
)
|
||||
)
|
||||
}
|
||||
|
@ -15,10 +15,7 @@ ds2dd_detailed(
|
||||
field.label = NULL,
|
||||
field.label.attr = "label",
|
||||
field.validation = NULL,
|
||||
metadata = names(REDCapCAST::redcapcast_meta),
|
||||
validate.time = FALSE,
|
||||
time.var.sel.pos = "[Tt]i[d(me)]",
|
||||
time.var.sel.neg = "[Dd]at[eo]"
|
||||
metadata = names(REDCapCAST::redcapcast_meta)
|
||||
)
|
||||
}
|
||||
\arguments{
|
||||
@ -58,14 +55,6 @@ file with `haven::read_dta()`).}
|
||||
|
||||
\item{metadata}{redcap metadata headings. Default is
|
||||
REDCapCAST:::metadata_names.}
|
||||
|
||||
\item{validate.time}{Flag to validate guessed time columns}
|
||||
|
||||
\item{time.var.sel.pos}{Positive selection regex string passed to
|
||||
`gues_time_only_filter()` as sel.pos.}
|
||||
|
||||
\item{time.var.sel.neg}{Negative selection regex string passed to
|
||||
`gues_time_only_filter()` as sel.neg.}
|
||||
}
|
||||
\value{
|
||||
list of length 2
|
||||
@ -84,7 +73,6 @@ Ensure, that the data set is formatted with as much information as possible.
|
||||
}
|
||||
\examples{
|
||||
data <- REDCapCAST::redcapcast_data
|
||||
data |> ds2dd_detailed(validate.time = TRUE)
|
||||
data |> ds2dd_detailed()
|
||||
iris |> ds2dd_detailed(add.auto.id = TRUE)
|
||||
iris |>
|
||||
|
33
man/guess_time_only.Rd
Normal file
33
man/guess_time_only.Rd
Normal file
@ -0,0 +1,33 @@
|
||||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/ds2dd_detailed.R
|
||||
\name{guess_time_only}
|
||||
\alias{guess_time_only}
|
||||
\title{Guess time variables based on naming pattern}
|
||||
\usage{
|
||||
guess_time_only(
|
||||
data,
|
||||
validate.time = FALSE,
|
||||
time.var.sel.pos = "[Tt]i[d(me)]",
|
||||
time.var.sel.neg = "[Dd]at[eo]"
|
||||
)
|
||||
}
|
||||
\arguments{
|
||||
\item{data}{data.frame or tibble}
|
||||
|
||||
\item{validate.time}{Flag to validate guessed time columns}
|
||||
|
||||
\item{time.var.sel.pos}{Positive selection regex string passed to
|
||||
`gues_time_only_filter()` as sel.pos.}
|
||||
|
||||
\item{time.var.sel.neg}{Negative selection regex string passed to
|
||||
`gues_time_only_filter()` as sel.neg.}
|
||||
}
|
||||
\value{
|
||||
data.frame or tibble
|
||||
}
|
||||
\description{
|
||||
This is for repairing data with time variables with appended "1970-01-01"
|
||||
}
|
||||
\examples{
|
||||
redcapcast_data |> guess_time_only(validate.time = TRUE)
|
||||
}
|
24
man/haven_all_levels.Rd
Normal file
24
man/haven_all_levels.Rd
Normal file
@ -0,0 +1,24 @@
|
||||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/ds2dd_detailed.R
|
||||
\name{haven_all_levels}
|
||||
\alias{haven_all_levels}
|
||||
\title{Finish incomplete haven attributes substituting missings with values}
|
||||
\usage{
|
||||
haven_all_levels(data)
|
||||
}
|
||||
\arguments{
|
||||
\item{data}{haven labelled variable}
|
||||
}
|
||||
\value{
|
||||
named vector
|
||||
}
|
||||
\description{
|
||||
Finish incomplete haven attributes substituting missings with values
|
||||
}
|
||||
\examples{
|
||||
ds <- structure(c(1, 2, 3, 2, 10, 9),
|
||||
labels = c(Unknown = 9, Refused = 10),
|
||||
class = "haven_labelled"
|
||||
)
|
||||
ds |> haven_all_levels()
|
||||
}
|
29
man/numchar2fct.Rd
Normal file
29
man/numchar2fct.Rd
Normal file
@ -0,0 +1,29 @@
|
||||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/ds2dd_detailed.R
|
||||
\name{numchar2fct}
|
||||
\alias{numchar2fct}
|
||||
\title{Applying var2fct across data set}
|
||||
\usage{
|
||||
numchar2fct(data, numeric.threshold = 6, character.throshold = 6)
|
||||
}
|
||||
\arguments{
|
||||
\item{data}{dataset. data.frame or tibble}
|
||||
|
||||
\item{numeric.threshold}{threshold for var2fct for numeric columns. Default
|
||||
is 6.}
|
||||
|
||||
\item{character.throshold}{threshold for var2fct for character columns.
|
||||
Default is 6.}
|
||||
}
|
||||
\value{
|
||||
data.frame or tibble
|
||||
}
|
||||
\description{
|
||||
Individual thresholds for character and numeric columns
|
||||
}
|
||||
\examples{
|
||||
mtcars |> str()
|
||||
mtcars |>
|
||||
numchar2fct(numeric.threshold = 6) |>
|
||||
str()
|
||||
}
|
39
man/parse_data.Rd
Normal file
39
man/parse_data.Rd
Normal file
@ -0,0 +1,39 @@
|
||||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/ds2dd_detailed.R
|
||||
\name{parse_data}
|
||||
\alias{parse_data}
|
||||
\title{Helper to auto-parse un-formatted data with haven and readr}
|
||||
\usage{
|
||||
parse_data(
|
||||
data,
|
||||
guess_type = TRUE,
|
||||
col_types = NULL,
|
||||
locale = readr::default_locale(),
|
||||
ignore.vars = "cpr",
|
||||
...
|
||||
)
|
||||
}
|
||||
\arguments{
|
||||
\item{data}{data.frame or tibble}
|
||||
|
||||
\item{guess_type}{logical to guess type with readr}
|
||||
|
||||
\item{col_types}{specify col_types using readr semantics. Ignored if guess_type is TRUE}
|
||||
|
||||
\item{locale}{option to specify locale. Defaults to readr::default_locale().}
|
||||
|
||||
\item{ignore.vars}{specify column names of columns to ignore when parsing}
|
||||
|
||||
\item{...}{ignored}
|
||||
}
|
||||
\value{
|
||||
data.frame or tibble
|
||||
}
|
||||
\description{
|
||||
Helper to auto-parse un-formatted data with haven and readr
|
||||
}
|
||||
\examples{
|
||||
mtcars |>
|
||||
parse_data() |>
|
||||
str()
|
||||
}
|
29
man/var2fct.Rd
Normal file
29
man/var2fct.Rd
Normal file
@ -0,0 +1,29 @@
|
||||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/ds2dd_detailed.R
|
||||
\name{var2fct}
|
||||
\alias{var2fct}
|
||||
\title{Convert vector to factor based on threshold of number of unique levels}
|
||||
\usage{
|
||||
var2fct(data, unique.n)
|
||||
}
|
||||
\arguments{
|
||||
\item{data}{vector or data.frame column}
|
||||
|
||||
\item{unique.n}{threshold to convert class to factor}
|
||||
}
|
||||
\value{
|
||||
vector
|
||||
}
|
||||
\description{
|
||||
This is a wrapper of forcats::as_factor, which sorts numeric vectors before
|
||||
factoring, but levels character vectors in order of appearance.
|
||||
}
|
||||
\examples{
|
||||
sample(seq_len(4), 20, TRUE) |>
|
||||
var2fct(6) |>
|
||||
summary()
|
||||
sample(letters, 20) |>
|
||||
var2fct(6) |>
|
||||
summary()
|
||||
sample(letters[1:4], 20, TRUE) |> var2fct(6)
|
||||
}
|
Loading…
Reference in New Issue
Block a user