quick and working sollution to get variable suffixes in the tables. included in the easy_redcap() when widening

This commit is contained in:
Andreas Gammelgaard Damsbo 2024-11-28 21:00:28 +01:00
parent 4ac9282c8f
commit c52fd2947c
No known key found for this signature in database
7 changed files with 102 additions and 26 deletions

View File

@ -64,6 +64,7 @@ export(set_attr)
export(shiny_cast) export(shiny_cast)
export(split_non_repeating_forms) export(split_non_repeating_forms)
export(strsplitx) export(strsplitx)
export(suffix2label)
export(var2fct) export(var2fct)
export(vec2choice) export(vec2choice)
importFrom(REDCapR,redcap_event_instruments) importFrom(REDCapR,redcap_event_instruments)

View File

@ -49,7 +49,9 @@ easy_redcap <- function(project.name, widen.data = TRUE, uri, ...) {
) )
if (widen.data) { if (widen.data) {
out <- out |> redcap_wider() out <- out |>
redcap_wider() |>
suffix2label()
} }
out out

View File

@ -81,8 +81,8 @@ utils::globalVariables(c(
#' redcap_wider(list4) #' redcap_wider(list4)
redcap_wider <- redcap_wider <-
function(data, function(data,
event.glue = "{.value}_{redcap_event_name}", event.glue = "{.value}____{redcap_event_name}",
inst.glue = "{.value}_{redcap_repeat_instance}") { inst.glue = "{.value}____{redcap_repeat_instance}") {
# browser() # browser()
if (!is_repeated_longitudinal(data)) { if (!is_repeated_longitudinal(data)) {
if (is.list(data)) { if (is.list(data)) {
@ -192,7 +192,7 @@ save_labels <- function(data) {
} }
# Removes class attributes of class "labelled" or "haven_labelled" # Removes class attributes of class "labelled" or "haven_labelled"
remove_labelled <- function(data){ remove_labelled <- function(data) {
stopifnot(is.list(data)) stopifnot(is.list(data))
lapply(data, \(.x) { lapply(data, \(.x) {
lapply(.x, \(.y) { lapply(.x, \(.y) {
@ -205,3 +205,34 @@ remove_labelled <- function(data){
dplyr::bind_cols() dplyr::bind_cols()
}) })
} }
#' Transfer variable name suffix to label in widened data
#'
#' @param data data.frame
#' @param suffix.sep string to split suffix(es). Passed to \link[base]{strsplit}
#' @param attr label attribute. Default is "label"
#' @param glue.str glue string for new label. Available variables are "label"
#' and "suffixes"
#'
#' @return data.frame
#' @export
#'
suffix2label <- function(data,
suffix.sep = "____",
attr = "label",
glue.str="{label} ({paste(suffixes,collapse=', ')})") {
data |>
purrr::imap(\(.d, .i){
suffixes <- unlist(strsplit(.i, suffix.sep))[-1]
if (length(suffixes) > 0) {
label <- get_attr(.d, attr = attr)
set_attr(.d,
glue::glue(glue.str),
attr = attr
)
} else {
.d
}
}) |>
dplyr::bind_cols()
}

View File

@ -6,8 +6,8 @@
\usage{ \usage{
redcap_wider( redcap_wider(
data, data,
event.glue = "{.value}_{redcap_event_name}", event.glue = "{.value}____{redcap_event_name}",
inst.glue = "{.value}_{redcap_repeat_instance}" inst.glue = "{.value}____{redcap_repeat_instance}"
) )
} }
\arguments{ \arguments{

29
man/suffix2label.Rd Normal file
View File

@ -0,0 +1,29 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/redcap_wider.R
\name{suffix2label}
\alias{suffix2label}
\title{Transfer variable name suffix to label in widened data}
\usage{
suffix2label(
data,
suffix.sep = "____",
attr = "label",
glue.str = "{label} ({paste(suffixes,collapse=', ')})"
)
}
\arguments{
\item{data}{data.frame}
\item{suffix.sep}{string to split suffix(es). Passed to \link[base]{strsplit}}
\item{attr}{label attribute. Default is "label"}
\item{glue.str}{glue string for new label. Available variables are "label"
and "suffixes"}
}
\value{
data.frame
}
\description{
Transfer variable name suffix to label in widened data
}

View File

@ -1,16 +1,16 @@
library(testthat) # library(testthat)
test_that("redcap_wider() returns expected output", { test_that("redcap_wider() returns expected output", {
list <- list <-
list( list(
data.frame( dplyr::tibble(
record_id = c(1, 2, 1, 2), record_id = c(1, 2, 1, 2),
redcap_event_name = c("baseline", "baseline", "followup", "followup"), redcap_event_name = c("baseline", "baseline", "followup", "followup"),
age = c(25, 26, 27, 28) age = c(25, 26, 27, 28)
), ),
data.frame( dplyr::tibble(
record_id = c(1, 2), record_id = c(1, 2),
redcap_event_name = c("baseline", "baseline"), redcap_event_name = c("baseline", "baseline"),
gender = c("male", "female") sex = c("male", "female")
) )
) )
@ -18,9 +18,9 @@ test_that("redcap_wider() returns expected output", {
redcap_wider(list), redcap_wider(list),
dplyr::tibble( dplyr::tibble(
record_id = c(1, 2), record_id = c(1, 2),
age_baseline = c(25, 26), age____baseline = c(25, 26),
age_followup = c(27, 28), age____followup = c(27, 28),
gender = c("male", "female") sex = c("male", "female")
) )
) )
}) })
@ -29,6 +29,7 @@ test_that("redcap_wider() returns expected output", {
# Using test data # Using test data
# Set up the path and data ------------------------------------------------- # Set up the path and data -------------------------------------------------
file_paths <- lapply( file_paths <- lapply(
c(records = "WARRIORtestForSoftwa_DATA_2018-06-21_1431.csv", c(records = "WARRIORtestForSoftwa_DATA_2018-06-21_1431.csv",
metadata = "WARRIORtestForSoftwareUpgrades_DataDictionary_2018-06-21.csv"), metadata = "WARRIORtestForSoftwareUpgrades_DataDictionary_2018-06-21.csv"),

View File

@ -44,10 +44,12 @@ This function includes a few convenience features to ease your further work.
If your project uses repeating instruments possible as a longitudinal project, you can choose to widen the data. If not, the result will be a list of each instrument you have chosen to extract data from. Make sure to specify only the fields or instruments you need, and avoid to save any of the data locally, but always source from REDCap to avoid possibly insecure local storage of sensitive data. If your project uses repeating instruments possible as a longitudinal project, you can choose to widen the data. If not, the result will be a list of each instrument you have chosen to extract data from. Make sure to specify only the fields or instruments you need, and avoid to save any of the data locally, but always source from REDCap to avoid possibly insecure local storage of sensitive data.
```{r eval=FALSE} ```{r eval=FALSE}
easy_redcap(uri = "YOUR URI", easy_redcap(
project.name = "MY_PROJECT", uri = "YOUR URI",
widen.data = TRUE, project.name = "MY_PROJECT",
fields = c("record_id", "OTHER FIELDS")) widen.data = TRUE,
fields = c("record_id", "OTHER FIELDS")
)
``` ```
## Splitting the dataset ## Splitting the dataset
@ -67,10 +69,12 @@ redcapcast_meta |> gt::gt()
To save the metadata as labels in the dataset, we can save field labels and the choices from radio buttons and dropdown features: To save the metadata as labels in the dataset, we can save field labels and the choices from radio buttons and dropdown features:
```{r} ```{r}
labelled_data <- labelled_data <-
apply_field_label(data=redcapcast_data, apply_field_label(
meta=redcapcast_meta) |> data = redcapcast_data,
apply_factor_labels(meta=redcapcast_meta) meta = redcapcast_meta
) |>
apply_factor_labels(meta = redcapcast_meta)
``` ```
The `REDCap_split` function splits the data set into a list of data.frames. The `REDCap_split` function splits the data set into a list of data.frames.
@ -81,7 +85,7 @@ list <-
records = labelled_data, records = labelled_data,
metadata = redcapcast_meta, metadata = redcapcast_meta,
forms = "all" forms = "all"
) |> ) |>
# Next steps cleans up and removes generic columns # Next steps cleans up and removes generic columns
sanitize_split() sanitize_split()
str(list) str(list)
@ -90,15 +94,23 @@ str(list)
The `easy_redcap()` will then (optionally) continue to widen the data, by transforming the list of data.frames to a single data.frame with one row for each subject/record_id (wide data format): The `easy_redcap()` will then (optionally) continue to widen the data, by transforming the list of data.frames to a single data.frame with one row for each subject/record_id (wide data format):
```{r} ```{r}
wide_data <- redcap_wider(list) wide_data <- redcap_wider(list,
event.glue = "{.value}____{redcap_event_name}",
inst.glue = "{.value}____{redcap_repeat_instance}"
)
wide_data |> str() wide_data |> str()
``` ```
Transfer suffixes to labels:
```{r}
wide_data_suffixes <- wide_data |> suffix2label()
```
## Creating a nice table ## Creating a nice table
```{r} ```{r}
wide_data |> wide_data_suffixes |>
dplyr::select(sex,hypertension, diabetes) |> dplyr::select(sex, hypertension, diabetes,mrs_score____follow2) |>
gtsummary::tbl_summary() gtsummary::tbl_summary()
``` ```