Major update. New functions and improvements. See NEWS.md.

This commit is contained in:
AG Damsbo 2023-03-07 15:38:28 +01:00
parent b57e130395
commit 9f68e27f5a
20 changed files with 441 additions and 95 deletions

View File

@ -2,3 +2,4 @@
^\.Rproj\.user$
^data-raw$
^test-data$
^troubleshooting\.R$

View File

@ -33,8 +33,10 @@ RoxygenNote: 7.2.3
URL: https://github.com/agdamsbo/REDCapRITS
BugReports: https://github.com/agdamsbo/REDCapRITS/issues
Imports:
dplyr,
REDCapR,
tidyr
tidyr,
tidyselect
Collate:
'utils.r'
'process_user_input.r'

View File

@ -1,8 +1,14 @@
# Generated by roxygen2: do not edit by hand
export(REDCap_split)
export(focused_metadata)
export(match_fields_to_form)
export(read_redcap_tables)
export(redcap_wider)
export(sanitize_split)
export(split_non_repeating_forms)
importFrom(REDCapR,redcap_event_instruments)
importFrom(REDCapR,redcap_metadata_read)
importFrom(REDCapR,redcap_read)
importFrom(tidyr,pivot_wider)
importFrom(tidyselect,all_of)

View File

@ -6,6 +6,8 @@ To reflect new functions and the limitation to only working in R, I have changed
The versioning has moved to a monthly naming convention.
The main goal this package is to keep the option to only export a defined subset of the whole dataset from the REDCap server as is made possible through the `REDCapR::redcap_read()` function, and combine it with the work put into the REDCapRITS package and the handling of longitudinal projects and/or projects with repeated instruments.
### Functions:
* `read_redcap_tables()` **NEW**: this function is mainly an implementation of the combined use of `REDCapR::readcap_read()` and `REDCap_split()` to maintain the focused nature of `REDCapR::readcap_read()`, to only download the specified data. Also implements tests of valid form names and event names. The usual fall-back solution was to get all data.
@ -13,3 +15,7 @@ The versioning has moved to a monthly naming convention.
* `redcap_wider()` **NEW**: this function pivots the long data frames from `read_redcap_tables()` using `tidyr::pivot_wider()`.
* `focused_metadata()` **NEW**: a hidden helper function to enable a focused data acquisition approach to handle only a subset of metadata corresponding to the focused dataset.
### Notes:
* metadata handling **IMPROVED**: improved handling of different column names in matadata (DataDictionary) from REDCap dependent on whether it is acquired thorugh the api og downloaded from the server.

View File

@ -1,6 +1,8 @@
#' Download REDCap data
#'
#' Wrapper function for using REDCapR::redcap_read and REDCapRITS::REDCap_split
#' Implementation of REDCap_split with a focused data acquisition approach using
#' REDCapR::redcap_read nad only downloading specified fields, forms and/or events
#' using the built-in focused_metadata
#' including some clean-up. Works with longitudinal projects with repeating
#' instruments.
#' @param uri REDCap database uri
@ -10,6 +12,7 @@
#' @param events events to download
#' @param forms forms to download
#' @param raw_or_label raw or label tags
#' @param split_forms Whether to split "repeating" or "all" forms, default is all.
#' @param generics vector of auto-generated generic variable names to
#' ignore when discarding empty rows
#'
@ -27,6 +30,7 @@ read_redcap_tables <- function(uri,
events = NULL,
forms = NULL,
raw_or_label = "label",
split_forms = "all",
generics = c(
"record_id",
"redcap_event_name",
@ -57,6 +61,7 @@ read_redcap_tables <- function(uri,
}
}
# Getting dataset
d <- REDCapR::redcap_read(
redcap_uri = uri,
token = token,
@ -65,23 +70,33 @@ read_redcap_tables <- function(uri,
forms = forms,
records = records,
raw_or_label = raw_or_label
)
)[["data"]]
m <-
REDCapR::redcap_metadata_read (redcap_uri = uri, token = token)
l <- REDCap_split(d$data,
focused_metadata(m$data,names(d$data)),
forms = "all")
lapply(l, function(i) {
if (ncol(i) > 2) {
s <- data.frame(i[, !colnames(i) %in% generics])
i[!apply(is.na(s), MARGIN = 1, FUN = all), ]
} else {
i
# Process repeat instrument naming
# Removes any extra characters other than a-z, 0-9 and "_", to mimic raw instrument names.
if ("redcap_repeat_instrument" %in% names(d)) {
d$redcap_repeat_instrument <-
gsub("[^a-z0-9_]", "", gsub(" ", "_", tolower(d$redcap_repeat_instrument)))
}
})
# Getting metadata
m <-
REDCapR::redcap_metadata_read (redcap_uri = uri, token = token)[["data"]]
# Processing metadata to reflect dataset
if (!is.null(c(fields,forms,events))){
m <- focused_metadata(m,names(d))
}
# Splitting
l <- REDCap_split(d,
m,
forms = split_forms,
primary_table_name = "nonrepeating")
# Sanitizing split list by removing completely empty rows apart from colnames
# in "generics"
sanitize_split(l,generics)
}

View File

@ -1,13 +1,17 @@
utils::globalVariables(c("redcap_wider",
"event.glue",
"inst.glue"))
#' @title Redcap Wider
#' @description Converts a list of REDCap data frames from long to wide format.
#' Handles longitudinal projects, but not yet repeated instruments.
#' @param list A list of data frames.
#' @param names.glud A string to glue the column names together.
#' @param event.glue A dplyr::glue string for repeated events naming
#' @param inst.glue A dplyr::glue string for repeated instruments naming
#' @return The list of data frames in wide format.
#' @export
#' @importFrom tidyr pivot_wider
#' @importFrom tidyselect all_of
#'
#' @examples
#' list <- list(data.frame(record_id = c(1,2,1,2),
@ -17,23 +21,74 @@
#' redcap_event_name = c("baseline", "baseline"),
#' gender = c("male", "female")))
#' redcap_wider(list)
redcap_wider <- function(list,names.glud="{.value}_{redcap_event_name}_long") {
l <- lapply(list,function(i){
incl <- any(duplicated(i[["record_id"]]))
redcap_wider <-
function(list,
event.glue = "{.value}_{redcap_event_name}",
inst.glue = "{.value}_{redcap_repeat_instance}") {
all_names <- unique(do.call(c, lapply(list, names)))
cname <- colnames(i)
vals <- cname[!cname%in%c("record_id","redcap_event_name")]
if (!any(c("redcap_event_name", "redcap_repeat_instrument") %in% all_names)) {
stop(
"The dataset does not include a 'redcap_event_name' variable.
redcap_wider only handles projects with repeating instruments or
longitudinal projects"
)
}
i$redcap_event_name <- tolower(gsub(" ","_",i$redcap_event_name))
# if (any(grepl("_timestamp",all_names))){
# stop("The dataset includes a '_timestamp' variable, which is not supported
# by this function yet. Sorry! Feel free to contribute :)")
# }
if (incl){
s <- tidyr::pivot_wider(i,
names_from = redcap_event_name,
id.name <- all_names[1]
l <- lapply(list, function(i) {
rep_inst <- "redcap_repeat_instrument" %in% names(i)
if (rep_inst) {
k <- lapply(split(i, f = i[[id.name]]), function(j) {
cname <- colnames(j)
vals <-
cname[!cname %in% c(
id.name,
"redcap_event_name",
"redcap_repeat_instrument",
"redcap_repeat_instance"
)]
s <- tidyr::pivot_wider(
j,
names_from = "redcap_repeat_instance",
values_from = all_of(vals),
names_glue = names.glud)
s[colnames(s)!="redcap_event_name"]
} else (i[colnames(i)!="redcap_event_name"])
names_glue = inst.glue
)
s[!colnames(s) %in% c("redcap_repeat_instrument")]
})
i <- Reduce(dplyr::bind_rows, k)
}
event <- "redcap_event_name" %in% names(i)
if (event) {
event.n <- length(unique(i[["redcap_event_name"]])) > 1
i[["redcap_event_name"]] <-
gsub(" ", "_", tolower(i[["redcap_event_name"]]))
if (event.n) {
cname <- colnames(i)
vals <- cname[!cname %in% c(id.name, "redcap_event_name")]
s <- tidyr::pivot_wider(
i,
names_from = "redcap_event_name",
values_from = all_of(vals),
names_glue = event.glue
)
s[colnames(s) != "redcap_event_name"]
} else
(i[colnames(i) != "redcap_event_name"])
} else
(i)
})
## Additional conditioning is needed to handle repeated instruments.

171
R/utils.r
View File

@ -1,48 +1,60 @@
#' focused_metadata
#' @description Extracts limited metadata for variables in a dataset
#' @param metadata A dataframe containing metadata
#' @param vars_in_data Vector of variable names in the dataset
#' @return A dataframe containing metadata for the variables in the dataset
#' @export
#' @examples
#'
focused_metadata <- function(metadata, vars_in_data) {
# metadata <- m$data
# vars_in_data <- names(d$data)
if (any(c("tbl_df", "tbl") %in% class(metadata))) {
metadata <- data.frame(metadata)
}
field_name <- grepl(".*[Ff]ield[._][Nn]ame$", names(metadata))
field_type <- grepl(".*[Ff]ield[._][Tt]ype$", names(metadata))
fields <-
metadata[!metadata$field_type %in% c("descriptive", "checkbox") &
metadata$field_name %in% vars_in_data,
"field_name"]
metadata[!metadata[, field_type] %in% c("descriptive", "checkbox") &
metadata[, field_name] %in% vars_in_data,
field_name]
# Process checkbox fields
if (any(metadata$field_type == "checkbox")) {
if (any(metadata[, field_type] == "checkbox")) {
# Getting base field names from checkbox fields
vars_check <- gsub(pattern = "___(\\d+)",replacement = "", vars_in_data)
vars_check <-
sub(pattern = "___.*$", replacement = "", vars_in_data)
# Processing
checkbox_basenames <-
metadata[metadata$field_type == "checkbox" &
metadata$field_name %in% vars_check,
"field_name"]
metadata[metadata[, field_type] == "checkbox" &
metadata[, field_name] %in% vars_check,
field_name]
fields <- rbind(fields, checkbox_basenames)
fields <- c(fields, checkbox_basenames)
}
# Process instrument status fields
form_names <- unique(metadata$form_name[metadata$field_name %in% fields$field_name])
form_names <-
unique(metadata[, grepl(".*[Ff]orm[._][Nn]ame$",
names(metadata))][metadata[, field_name]
%in% fields])
form_complete_fields <- data.frame(
field_name = paste0(form_names, "_complete"),
stringsAsFactors = FALSE
)
form_complete_fields <- paste0(form_names, "_complete")
fields <- rbind(fields, form_complete_fields)
fields <- c(fields, form_complete_fields)
# Process survey timestamps
timestamps <-
intersect(vars_in_data, paste0(form_names, "_timestamp"))
if (length(timestamps)) {
timestamp_fields <- data.frame(
field_name = timestamps,
stringsAsFactors = FALSE
)
timestamp_fields <- timestamps
fields <- rbind(fields, timestamp_fields)
fields <- c(fields, timestamp_fields)
}
@ -64,20 +76,73 @@ focused_metadata <- function(metadata, vars_in_data) {
},
y = vars_in_data))
fields <- rbind(fields, factor_fields)
fields <- c(fields, factor_fields[, 1])
}
metadata[metadata$field_name %in% fields$field_name,]
metadata[metadata[, field_name] %in% fields, ]
}
# function to convert the list of dataframes
#' Sanitize list of data frames
#'
#' Removing empty rows
#' @param l A list of data frames.
#' @param generic.names A vector of generic names to be excluded.
#'
#' @return A list of data frames with generic names excluded.
#'
#' @export
#'
#' @examples
#'
sanitize_split <- function(l,
generic.names = c(
"record_id",
"redcap_event_name",
"redcap_repeat_instrument",
"redcap_repeat_instance"
)) {
lapply(l, function(i) {
if (ncol(i) > 2) {
s <- data.frame(i[, !colnames(i) %in% generic.names])
i[!apply(is.na(s), MARGIN = 1, FUN = all),]
} else {
i
}
})
}
#' Match fields to forms
#'
#' @param metadata A data frame containing field names and form names
#' @param vars_in_data A character vector of variable names
#'
#' @return A data frame containing field names and form names
#'
#' @export
#'
#' @examples
#'
#'
match_fields_to_form <- function(metadata, vars_in_data) {
fields <- metadata[!metadata$field_type %in% c("descriptive", "checkbox"),
c("field_name", "form_name")]
field_form_name <- grepl(".*([Ff]ield|[Ff]orm)[._][Nn]ame$",names(metadata))
field_type <- grepl(".*[Ff]ield[._][Tt]ype$",names(metadata))
fields <- metadata[!metadata[,field_type] %in% c("descriptive", "checkbox"),
field_form_name]
names(fields) <- c("field_name", "form_name")
# Process instrument status fields
form_names <- unique(metadata$form_name)
form_names <- unique(metadata[,grepl(".*[Ff]orm[._][Nn]ame$",names(metadata))])
form_complete_fields <- data.frame(
field_name = paste0(form_names, "_complete"),
form_name = form_names,
@ -101,9 +166,9 @@ match_fields_to_form <- function(metadata, vars_in_data) {
}
# Process checkbox fields
if (any(metadata$field_type == "checkbox")) {
checkbox_basenames <- metadata[metadata$field_type == "checkbox",
c("field_name", "form_name")]
if (any(metadata[,field_type] == "checkbox")) {
checkbox_basenames <- metadata[metadata[,field_type] == "checkbox",
field_form_name]
checkbox_fields <-
do.call("rbind",
@ -111,7 +176,9 @@ match_fields_to_form <- function(metadata, vars_in_data) {
1,
function(x, y)
data.frame(
field_name = y[grepl(paste0("^", x[1], "___((?!\\.factor).)+$"), y, perl = TRUE)],
field_name =
y[grepl(paste0("^", x[1], "___((?!\\.factor).)+$"),
y, perl = TRUE)],
form_name = x[2],
stringsAsFactors = FALSE,
row.names = NULL
@ -148,14 +215,50 @@ match_fields_to_form <- function(metadata, vars_in_data) {
}
#' Split a data frame into separate tables for each form
#'
#' @param table A data frame
#' @param universal_fields A character vector of fields that should be included
#' in every table
#' @param fields A two-column matrix containing the names of fields that should
#' be included in each form
#'
#' @return A list of data frames, one for each non-repeating form
#'
#' @export
#'
#' @examples
#' # Create a table
#' table <- data.frame(
#' id = c(1, 2, 3, 4, 5),
#' form_a_name = c("John", "Alice", "Bob", "Eve", "Mallory"),
#' form_a_age = c(25, 30, 25, 15, 20),
#' form_b_name = c("John", "Alice", "Bob", "Eve", "Mallory"),
#' form_b_gender = c("M", "F", "M", "F", "F")
#' )
#'
#' # Create the universal fields
#' universal_fields <- c("id")
#'
#' # Create the fields
#' fields <- matrix(
#' c("form_a_name", "form_a",
#' "form_a_age", "form_a",
#' "form_b_name", "form_b",
#' "form_b_gender", "form_b"),
#' ncol = 2, byrow = TRUE
#' )
#'
#' # Split the table
#' split_non_repeating_forms(table, universal_fields, fields)
split_non_repeating_forms <-
function(table, universal_fields, fields) {
forms <- unique(fields[[2]])
x <- lapply(forms,
function (x) {
table[names(table) %in% union(universal_fields, fields[fields[, 2] == x, 1])]
table[names(table) %in% union(universal_fields,
fields[fields[, 2] == x, 1])]
})
structure(x, names = forms)

19
man/focused_metadata.Rd Normal file
View File

@ -0,0 +1,19 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/utils.r
\name{focused_metadata}
\alias{focused_metadata}
\title{focused_metadata}
\usage{
focused_metadata(metadata, vars_in_data)
}
\arguments{
\item{metadata}{A dataframe containing metadata}
\item{vars_in_data}{Vector of variable names in the dataset}
}
\value{
A dataframe containing metadata for the variables in the dataset
}
\description{
Extracts limited metadata for variables in a dataset
}

View File

@ -0,0 +1,19 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/utils.r
\name{match_fields_to_form}
\alias{match_fields_to_form}
\title{Match fields to forms}
\usage{
match_fields_to_form(metadata, vars_in_data)
}
\arguments{
\item{metadata}{A data frame containing field names and form names}
\item{vars_in_data}{A character vector of variable names}
}
\value{
A data frame containing field names and form names
}
\description{
Match fields to forms
}

View File

@ -12,9 +12,9 @@ read_redcap_tables(
events = NULL,
forms = NULL,
raw_or_label = "label",
split_forms = "all",
generics = c("record_id", "redcap_event_name", "redcap_repeat_instrument",
"redcap_repeat_instance"),
...
"redcap_repeat_instance")
)
}
\arguments{
@ -32,16 +32,18 @@ read_redcap_tables(
\item{raw_or_label}{raw or label tags}
\item{split_forms}{Whether to split "repeating" or "all" forms, default is all.}
\item{generics}{vector of auto-generated generic variable names to
ignore when discarding empty rows}
\item{...}{ekstra parameters for REDCapR::redcap_read_oneshot}
}
\value{
list of instruments
}
\description{
Wrapper function for using REDCapR::redcap_read and REDCapRITS::REDCap_split
Implementation of REDCap_split with a focused data acquisition approach using
REDCapR::redcap_read nad only downloading specified fields, forms and/or events
using the built-in focused_metadata
including some clean-up. Works with longitudinal projects with repeating
instruments.
}

View File

@ -4,18 +4,25 @@
\alias{redcap_wider}
\title{Redcap Wider}
\usage{
redcap_wider(list, names.glud = "{.value}_{redcap_event_name}_long")
redcap_wider(
list,
event.glue = "{.value}_{redcap_event_name}",
inst.glue = "{.value}_{redcap_repeat_instance}"
)
}
\arguments{
\item{list}{A list of data frames.}
\item{names.glud}{A string to glue the column names together.}
\item{event.glue}{A dplyr::glue string for repeated events naming}
\item{inst.glue}{A dplyr::glue string for repeated instruments naming}
}
\value{
The list of data frames in wide format.
}
\description{
Converts a list of REDCap data frames from long to wide format.
Handles longitudinal projects, but not yet repeated instruments.
}
\examples{
list <- list(data.frame(record_id = c(1,2,1,2),

23
man/sanitize_split.Rd Normal file
View File

@ -0,0 +1,23 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/utils.r
\name{sanitize_split}
\alias{sanitize_split}
\title{Sanitize list of data frames}
\usage{
sanitize_split(
l,
generic.names = c("record_id", "redcap_event_name", "redcap_repeat_instrument",
"redcap_repeat_instance")
)
}
\arguments{
\item{l}{A list of data frames.}
\item{generic.names}{A vector of generic names to be excluded.}
}
\value{
A list of data frames with generic names excluded.
}
\description{
Removing empty rows
}

View File

@ -0,0 +1,48 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/utils.r
\name{split_non_repeating_forms}
\alias{split_non_repeating_forms}
\title{Split a data frame into separate tables for each form}
\usage{
split_non_repeating_forms(table, universal_fields, fields)
}
\arguments{
\item{table}{A data frame}
\item{universal_fields}{A character vector of fields that should be included
in every table}
\item{fields}{A two-column matrix containing the names of fields that should
be included in each form}
}
\value{
A list of data frames, one for each non-repeating form
}
\description{
Split a data frame into separate tables for each form
}
\examples{
# Create a table
table <- data.frame(
id = c(1, 2, 3, 4, 5),
form_a_name = c("John", "Alice", "Bob", "Eve", "Mallory"),
form_a_age = c(25, 30, 25, 15, 20),
form_b_name = c("John", "Alice", "Bob", "Eve", "Mallory"),
form_b_gender = c("M", "F", "M", "F", "F")
)
# Create the universal fields
universal_fields <- c("id")
# Create the fields
fields <- matrix(
c("form_a_name", "form_a",
"form_a_age", "form_a",
"form_b_name", "form_b",
"form_b_gender", "form_b"),
ncol = 2, byrow = TRUE
)
# Split the table
split_non_repeating_forms(table, universal_fields, fields)
}

View File

@ -1,4 +1,4 @@
library(testthat)
library(REDCapRITS)
library(REDCapCAST)
test_check("REDCapRITS")
test_check("REDCapCAST")

BIN
tests/testthat/.DS_Store vendored Normal file

Binary file not shown.

View File

@ -1,19 +1,19 @@
"Variable / Field Name","Form Name","Section Header","Field Type","Field Label","Choices, Calculations, OR Slider Labels","Field Note","Text Validation Type OR Show Slider Number","Text Validation Min","Text Validation Max",Identifier?,"Branching Logic (Show field only if...)","Required Field?","Custom Alignment","Question Number (surveys only)","Matrix Group Name","Matrix Ranking?","Field Annotation"
field_name,form_name,section_header,field_type,field_label,select_choices_or_calculations,field_note,text_validation_type_or_show_slider_number,text_validation_min,text_validation_max,identifier,branching_logic,required_field,custom_alignment,question_number,matrix_group_name,matrix_ranking,field_annotation
row,motor_trend_cars,,text,Name,,,,,,,,,,,,,
mpg,motor_trend_cars,,text,"Miles/(US) gallon",,,number,,,,,,,,,,
cyl,motor_trend_cars,,radio,"Number of cylinders","3, 3 | 4, 4 | 5, 5 | 6, 6 | 7, 7 | 8, 8",,,,,,,,,,,,
mpg,motor_trend_cars,,text,Miles/(US) gallon,,,number,,,,,,,,,,
cyl,motor_trend_cars,,radio,Number of cylinders,"3, 3 | 4, 4 | 5, 5 | 6, 6 | 7, 7 | 8, 8",,,,,,,,,,,,
disp,motor_trend_cars,,text,Displacement,,(cu.in.),number,,,,,,,,,,
hp,motor_trend_cars,,text,"Gross horsepower",,,number,,,,,,,,,,
drat,motor_trend_cars,,text,"Rear axle ratio",,,number,,,,,,,,,,
wt,motor_trend_cars,,text,Weight,,"(1000 lbs)",number,,,,,,,,,,
qsec,motor_trend_cars,,text,"1/4 mile time",,,number,,,,,,,,,,
vs,motor_trend_cars,,yesno,"V engine?",,,,,,,,,,,,,
hp,motor_trend_cars,,text,Gross horsepower,,,number,,,,,,,,,,
drat,motor_trend_cars,,text,Rear axle ratio,,,number,,,,,,,,,,
wt,motor_trend_cars,,text,Weight,,(1000 lbs),number,,,,,,,,,,
qsec,motor_trend_cars,,text,1/4 mile time,,,number,,,,,,,,,,
vs,motor_trend_cars,,yesno,V engine?,,,,,,,,,,,,,
am,motor_trend_cars,,dropdown,Transmission,"0, Automatic | 1, Manual"," (0 = automatic, 1 = manual)",,,,,,,,,,,
gear,motor_trend_cars,,radio,"Number of forward gears","3, 3 | 4, 4 | 5, 5",,,,,,,,,,,,
carb,motor_trend_cars,,radio,"Number of carburetors","1, 1 | 2, 2 | 3, 3 | 4, 4 | 5, 5 | 6, 6 | 7, 7 | 8, 8",,,,,,,,,,,,
color_available,motor_trend_cars,,checkbox,"Colors Available","red, Red | green, Green | blue, Blue | black, Black",,,,,,,,,,,,
letter_group,grouping,,checkbox,"Which group?","a, A | b, B | c, C",,,,,,,,,,,,
choice,grouping,,radio,"Choose one","choice1, Choice 1 | choice2, Choice 2",,,,,,,,,,,,
price,sale,,text,"Sale price",,,number_2dp,,,,,,,,,,
gear,motor_trend_cars,,radio,Number of forward gears,"3, 3 | 4, 4 | 5, 5",,,,,,,,,,,,
carb,motor_trend_cars,,radio,Number of carburetors,"1, 1 | 2, 2 | 3, 3 | 4, 4 | 5, 5 | 6, 6 | 7, 7 | 8, 8",,,,,,,,,,,,
color_available,motor_trend_cars,,checkbox,Colors Available,"red, Red | green, Green | blue, Blue | black, Black",,,,,,,,,,,,
letter_group,grouping,,checkbox,Which group?,"a, A | b, B | c, C",,,,,,,,,,,,
choice,grouping,,radio,Choose one,"choice1, Choice 1 | choice2, Choice 2",,,,,,,,,,,,
price,sale,,text,Sale price,,,number_2dp,,,,,,,,,,
color,sale,,dropdown,Color,"1, red | 2, green | 3, blue | 4, black",,,,,,,,,,,,
customer,sale,,text,"Customer Name",,,,,,,,,RH,,,,
customer,sale,,text,Customer Name,,,,,,,,,RH,,,,

1 Variable / Field Name field_name Form Name form_name Section Header section_header Field Type field_type Field Label field_label Choices, Calculations, OR Slider Labels select_choices_or_calculations Field Note field_note Text Validation Type OR Show Slider Number text_validation_type_or_show_slider_number Text Validation Min text_validation_min Text Validation Max text_validation_max Identifier? identifier Branching Logic (Show field only if...) branching_logic Required Field? required_field Custom Alignment custom_alignment Question Number (surveys only) question_number Matrix Group Name matrix_group_name Matrix Ranking? matrix_ranking Field Annotation field_annotation
2 row motor_trend_cars text Name
3 mpg motor_trend_cars text Miles/(US) gallon number
4 cyl motor_trend_cars radio Number of cylinders 3, 3 | 4, 4 | 5, 5 | 6, 6 | 7, 7 | 8, 8
5 disp motor_trend_cars text Displacement (cu.in.) number
6 hp motor_trend_cars text Gross horsepower number
7 drat motor_trend_cars text Rear axle ratio number
8 wt motor_trend_cars text Weight (1000 lbs) number
9 qsec motor_trend_cars text 1/4 mile time number
10 vs motor_trend_cars yesno V engine?
11 am motor_trend_cars dropdown Transmission 0, Automatic | 1, Manual (0 = automatic, 1 = manual)
12 gear motor_trend_cars radio Number of forward gears 3, 3 | 4, 4 | 5, 5
13 carb motor_trend_cars radio Number of carburetors 1, 1 | 2, 2 | 3, 3 | 4, 4 | 5, 5 | 6, 6 | 7, 7 | 8, 8
14 color_available motor_trend_cars checkbox Colors Available red, Red | green, Green | blue, Blue | black, Black
15 letter_group grouping checkbox Which group? a, A | b, B | c, C
16 choice grouping radio Choose one choice1, Choice 1 | choice2, Choice 2
17 price sale text Sale price number_2dp
18 color sale dropdown Color 1, red | 2, green | 3, blue | 4, black
19 customer sale text Customer Name RH

View File

@ -2,7 +2,7 @@
# system.file(
# "testdata",
# x,
# package = "REDCapRITS"
# package = "REDCapCAST"
# )
# }

View File

@ -15,6 +15,22 @@ test_that("CSV export matches reference", {
expect_known_hash(redcap_output_csv1, "f74558d1939c17d9ff0e08a19b956e26")
})
# Test that REDCap_split can handle a focused dataset
records_red <- records[!records$redcap_repeat_instrument == "sale",
!names(records) %in% metadata$field_name[metadata$form_name == "sale"] &
!names(records) == "sale_complete"]
records_red$redcap_repeat_instrument <- as.character(records_red$redcap_repeat_instrument)
redcap_output_red <- REDCap_split(records_red, metadata)
test_that("REDCap_split handles subset dataset",
{
testthat::expect_length(redcap_output_red,1)
})
# Test that R code enhanced CSV export matches reference --------------------
if (requireNamespace("Hmisc", quietly = TRUE)) {
test_that("R code enhanced export matches reference", {
@ -53,3 +69,5 @@ if (requireNamespace("readr", quietly = TRUE)) {
})
}

View File

@ -1,4 +1,3 @@
# Unit Test
# Test that the function throws an error when uri and token are not provided
test_that("read_redcap_tables throws error when uri and token are not provided",

View File

@ -4,7 +4,30 @@ test_that("redcap_wider() returns expected output", {
expect_equal(redcap_wider(list),
data.frame(record_id = c(1,2),
age_baseline_long = c(25,26),
age_followup_long = c(27,28),
age_baseline = c(25,26),
age_followup = c(27,28),
gender = c("male","female")))
})
# Using test data
# Set up the path and data -------------------------------------------------
file_paths <- sapply(
c(records = "WARRIORtestForSoftwa_DATA_2018-06-21_1431.csv",
metadata = "WARRIORtestForSoftwareUpgrades_DataDictionary_2018-06-21.csv"),
get_data_location
)
redcap <- lapply(file_paths, read.csv, stringsAsFactors = FALSE)
redcap[["metadata"]] <- with(redcap, metadata[metadata[, 1] > "",])
list <-
with(redcap, REDCap_split(records, metadata, forms = "all"))
wide_ds <- redcap_wider(list)
test_that("redcap_wider() returns wide output from CSV",{
expect_equal(ncol(wide_ds),171)
})