Closes #9. User can specify primary table label

Incremented to v0.1.0
This commit is contained in:
Paul W. Egeler, M.S., GStat 2019-07-01 16:54:29 -04:00
parent c0428f880f
commit 76420b527c
5 changed files with 118 additions and 87 deletions

View File

@ -1,6 +1,6 @@
Package: REDCapRITS
Title: REDCap Repeating Instrument Table Splitter
Version: 0.0.0
Version: 0.1.0
Authors@R: c(
person("Paul", "Egeler", email = "paul.egeler@spectrumhealth.org", role = c("aut", "cre")),
person("Spectrum Health, Grand Rapids, MI", role = "cph"))
@ -18,9 +18,10 @@ Suggests:
License: GPL-3
Encoding: UTF-8
LazyData: true
RoxygenNote: 6.0.1
RoxygenNote: 6.1.1
URL: https://github.com/SpectrumHealthResearch/REDCapRITS
BugReports: https://github.com/SpectrumHealthResearch/REDCapRITS/issues
Collate:
'utils.r'
'process_user_input.r'
'REDCap_split.r'

10
R/NEWS.md Normal file
View File

@ -0,0 +1,10 @@
# REDCapRITS 0.1.0 (Release date: 2019-07-01)
* [feature] User can now specify the name of the 'primary' table, which previously was left blank. (#9)
* [bug] Keeps REDCap-generated fields in non-repeating data.frame that are not present in metadata file. (#7)
* [enhancement] Unit tests created. (#6)
* [bug] Checkbox data now supported. (#1)
# REDCapRITS 0.0.0 (Release date: 2018-06-03)
* Initial Release

View File

@ -10,6 +10,8 @@
#' @param metadata Project metadata (the data dictionary). May be a
#' \code{data.frame}, \code{response}, or \code{character} vector containing
#' JSON from an API call.
#' @param primary_table_label Name of the label given to the list element for
#' the primary output table (as described in *README.md*).
#' @author Paul W. Egeler, M.S., GStat
#' @examples
#' \dontrun{
@ -66,9 +68,12 @@
#' }
#' @return A list of \code{"data.frame"}s: one base table and zero or more
#' tables for each repeating instrument.
#' @include process_user_input.r
#' @include process_user_input.r utils.r
#' @export
REDCap_split <- function(records, metadata) {
REDCap_split <- function(records,
metadata,
primary_table_label = ""
) {
# Process user input
records <- process_user_input(records)
@ -78,12 +83,8 @@ REDCap_split <- function(records, metadata) {
vars_in_data <- names(records)
# Check to see if there were any repeating instruments
if (!any(vars_in_data == "redcap_repeat_instrument")) {
message("There are no repeating instruments in this data.")
return(list(records))
if (!"redcap_repeat_instrument" %in% vars_in_data) {
stop("There are no repeating instruments in this dataset.")
}
# Standardize variable names for metadata
@ -93,80 +94,7 @@ REDCap_split <- function(records, metadata) {
metadata <- rapply(metadata, as.character, classes = "factor", how = "replace")
# Find the fields and associated form
fields <- metadata[
!metadata$field_type %in% c("descriptive", "checkbox"),
c("field_name", "form_name")
]
# Process instrument status fields
form_names <- unique(metadata$form_name)
form_complete_fields <- data.frame(
field_name = paste0(form_names, "_complete"),
form_name = form_names,
stringsAsFactors = FALSE
)
fields <- rbind(fields, form_complete_fields)
# Process checkbox fields
if (any(metadata$field_type == "checkbox")) {
checkbox_basenames <- metadata[
metadata$field_type == "checkbox",
c("field_name", "form_name")
]
checkbox_fields <-
do.call(
"rbind",
apply(
checkbox_basenames,
1,
function(x, y)
data.frame(
field_name = y[grepl(paste0("^", x[1], "___((?!\\.factor).)+$"), y, perl = TRUE)],
form_name = x[2],
stringsAsFactors = FALSE,
row.names = NULL
),
y = vars_in_data
)
)
fields <- rbind(fields, checkbox_fields)
}
# Process ".*\\.factor" fields supplied by REDCap's export data R script
if (any(grepl("\\.factor$", vars_in_data))) {
factor_fields <-
do.call(
"rbind",
apply(
fields,
1,
function(x, y) {
field_indices <- grepl(paste0("^", x[1], "\\.factor$"), y)
if (any(field_indices))
data.frame(
field_name = y[field_indices],
form_name = x[2],
stringsAsFactors = FALSE,
row.names = NULL
)
},
y = vars_in_data
)
)
fields <- rbind(fields, factor_fields)
}
# Identify the subtables in the data
subtables <- unique(records$redcap_repeat_instrument)
subtables <- subtables[subtables != ""]
fields <- match_fields_to_form(metadata, vars_in_data)
# Variables to be present in each output table
universal_fields <- c(
@ -187,13 +115,26 @@ REDCap_split <- function(records, metadata) {
)
# Identify the subtables in the data
subtables <- unique(records$redcap_repeat_instrument)
subtables <- subtables[subtables != ""]
# Split the table based on instrument
out <- split.data.frame(records, records$redcap_repeat_instrument)
if (primary_table_label %in% subtables) {
warning(
"The label given to the primary table is already used by a repeating instrument.\n",
"The primary table label will be left blank."
)
} else if (primary_table_label > "") {
names(out)[[which(names(out) == "")]] <- primary_table_label
}
# Delete the variables that are not relevant
for (i in names(out)) {
if (i == "") {
if (i == primary_table_label) {
out_fields <- which(
vars_in_data %in% c(
@ -201,7 +142,7 @@ REDCap_split <- function(records, metadata) {
fields[!fields[,2] %in% subtables, 1]
)
)
out[[which(names(out) == "")]] <- out[[which(names(out) == "")]][out_fields]
out[[which(names(out) == primary_table_label)]] <- out[[which(names(out) == primary_table_label)]][out_fields]
} else {

76
R/R/utils.r Normal file
View File

@ -0,0 +1,76 @@
match_fields_to_form <- function(metadata, vars_in_data) {
fields <- metadata[
!metadata$field_type %in% c("descriptive", "checkbox"),
c("field_name", "form_name")
]
# Process instrument status fields
form_names <- unique(metadata$form_name)
form_complete_fields <- data.frame(
field_name = paste0(form_names, "_complete"),
form_name = form_names,
stringsAsFactors = FALSE
)
fields <- rbind(fields, form_complete_fields)
# Process checkbox fields
if (any(metadata$field_type == "checkbox")) {
checkbox_basenames <- metadata[
metadata$field_type == "checkbox",
c("field_name", "form_name")
]
checkbox_fields <-
do.call(
"rbind",
apply(
checkbox_basenames,
1,
function(x, y)
data.frame(
field_name = y[grepl(paste0("^", x[1], "___((?!\\.factor).)+$"), y, perl = TRUE)],
form_name = x[2],
stringsAsFactors = FALSE,
row.names = NULL
),
y = vars_in_data
)
)
fields <- rbind(fields, checkbox_fields)
}
# Process ".*\\.factor" fields supplied by REDCap's export data R script
if (any(grepl("\\.factor$", vars_in_data))) {
factor_fields <-
do.call(
"rbind",
apply(
fields,
1,
function(x, y) {
field_indices <- grepl(paste0("^", x[1], "\\.factor$"), y)
if (any(field_indices))
data.frame(
field_name = y[field_indices],
form_name = x[2],
stringsAsFactors = FALSE,
row.names = NULL
)
},
y = vars_in_data
)
)
fields <- rbind(fields, factor_fields)
}
fields
}

View File

@ -4,7 +4,7 @@
\alias{REDCap_split}
\title{Split REDCap repeating instruments table into multiple tables}
\usage{
REDCap_split(records, metadata)
REDCap_split(records, metadata, primary_table_label = "")
}
\arguments{
\item{records}{Exported project records. May be a \code{data.frame},
@ -14,6 +14,9 @@ call.}
\item{metadata}{Project metadata (the data dictionary). May be a
\code{data.frame}, \code{response}, or \code{character} vector containing
JSON from an API call.}
\item{primary_table_label}{Name of the label given to the list element for
the primary output table (as described in *README.md*).}
}
\value{
A list of \code{"data.frame"}s: one base table and zero or more