REDCapCAST/R/ds2dd_detailed.R

545 lines
16 KiB
R
Raw Normal View History

2024-02-27 13:20:21 +01:00
utils::globalVariables(c(
"stats::setNames",
"field_name",
"field_type",
"select_choices_or_calculations",
"field_label"
2024-02-27 13:20:21 +01:00
))
#' Try at determining which are true time only variables
#'
#' @description
#' This is just a try at guessing data type based on data class and column names
#' hoping for a tiny bit of naming consistency. R does not include a time-only
#' data format natively, so the "hms" class from `readr` is used. This
#' has to be converted to character class before REDCap upload.
#'
#' @param data data set
#' @param validate flag to output validation data. Will output list.
#' @param sel.pos Positive selection regex string
#' @param sel.neg Negative selection regex string
#'
#' @return character vector or list depending on `validate` flag.
#' @export
#'
#' @examples
#' data <- redcapcast_data
#' data |> guess_time_only_filter()
2024-02-27 13:20:21 +01:00
#' data |>
#' guess_time_only_filter(validate = TRUE) |>
#' lapply(head)
guess_time_only_filter <- function(data,
validate = FALSE,
sel.pos = "[Tt]i[d(me)]",
sel.neg = "[Dd]at[eo]") {
datetime_nms <- data |>
2024-02-27 13:20:21 +01:00
lapply(\(x) any(c("POSIXct", "hms") %in% class(x))) |>
(\(x) names(data)[do.call(c, x)])()
time_only_log <- datetime_nms |> (\(x) {
## Detects which are determined true Time only variables
## Inspection is necessary
grepl(pattern = sel.pos, x = x) &
!grepl(pattern = sel.neg, x = x)
})()
if (validate) {
list(
"is.POSIX" = data[datetime_nms],
"is.datetime" = data[datetime_nms[!time_only_log]],
"is.time_only" = data[datetime_nms[time_only_log]]
)
} else {
datetime_nms[time_only_log]
}
}
2024-02-27 13:20:21 +01:00
#' Correction based on time_only_filter function
#'
#'
#' @param data data set
#' @param ... arguments passed on to `guess_time_only_filter()`
#'
#' @return tibble
#' @importFrom readr parse_time
#'
#' @examples
#' data <- redcapcast_data
#' ## data |> time_only_correction()
time_only_correction <- function(data, ...) {
nms <- guess_time_only_filter(data, ...)
z <- nms |>
lapply(\(y) {
readr::parse_time(format(data[[y]], format = "%H:%M:%S"))
}) |>
suppressMessages(dplyr::bind_cols()) |>
stats::setNames(nm = nms)
data[nms] <- z
data
}
#' Change "hms" to "character" for REDCap upload.
#'
#' @param data data set
#'
#' @return data.frame or tibble
#'
#' @examples
#' data <- redcapcast_data
#' ## data |> time_only_correction() |> hms2character()
hms2character <- function(data) {
data |>
lapply(function(x) {
if ("hms" %in% class(x)) {
as.character(x)
} else {
x
}
}) |>
dplyr::bind_cols()
}
#' Extract data from stata file for data dictionary
#'
#' @details
#' This function is a natural development of the ds2dd() function. It assumes
#' that the first column is the ID-column. No checks.
#' Please, do always inspect the data dictionary before upload.
#'
#' Ensure, that the data set is formatted with as much information as possible.
#'
#' `field.type` can be supplied
#'
#' @param data data frame
#' @param date.format date format, character string. ymd/dmy/mdy. dafault is
#' dmy.
#' @param add.auto.id flag to add id column
#' @param form.name manually specify form name(s). Vector of length 1 or
#' ncol(data). Default is NULL and "data" is used.
#' @param form.sep If supplied dataset has form names as suffix or prefix to the
#' column/variable names, the seperator can be specified. If supplied, the
2024-10-24 11:41:48 +02:00
#' form.name is ignored. Default is NULL.
#' @param form.prefix Flag to set if form is prefix (TRUE) or suffix (FALSE) to
#' the column names. Assumes all columns have pre- or suffix if specified.
#' @param field.type manually specify field type(s). Vector of length 1 or
#' ncol(data). Default is NULL and "text" is used for everything but factors,
#' which wil get "radio".
#' @param field.label manually specify field label(s). Vector of length 1 or
#' ncol(data). Default is NULL and colnames(data) is used or attribute
#' `field.label.attr` for haven_labelled data set (imported .dta file with
#' `haven::read_dta()`).
#' @param field.label.attr attribute name for named labels for haven_labelled
#' data set (imported .dta file with `haven::read_dta()`. Default is "label"
#' @param field.validation manually specify field validation(s). Vector of
#' length 1 or ncol(data). Default is NULL and `levels()` are used for factors
2024-02-27 13:20:21 +01:00
#' or attribute `factor.labels.attr` for haven_labelled data set (imported .dta
#' file with `haven::read_dta()`).
#' @param metadata redcap metadata headings. Default is
#' REDCapCAST:::metadata_names.
#' @param convert.logicals convert logicals to factor. Default is TRUE.
#'
#' @return list of length 2
#' @export
#'
#' @examples
#' \dontrun{
#' data <- REDCapCAST::redcapcast_data
#' data |> ds2dd_detailed()
#' iris |> ds2dd_detailed(add.auto.id = TRUE)
2024-10-24 11:41:48 +02:00
#' iris |>
#' ds2dd_detailed(
#' add.auto.id = TRUE,
#' form.name = sample(c("b", "c"), size = 6, replace = TRUE, prob = rep(.5, 2))
#' ) |>
#' purrr::pluck("meta")
#' mtcars |> ds2dd_detailed(add.auto.id = TRUE)
#' data <- iris |>
#' ds2dd_detailed(add.auto.id = TRUE) |>
#' purrr::pluck("data")
#' names(data) <- glue::glue("{sample(x = c('a','b'),size = length(names(data)),
#' replace=TRUE,prob = rep(x=.5,2))}__{names(data)}")
2024-10-24 11:41:48 +02:00
#' data |> ds2dd_detailed(form.sep = "__")
#' }
ds2dd_detailed <- function(data,
add.auto.id = FALSE,
date.format = "dmy",
form.name = NULL,
form.sep = NULL,
form.prefix = TRUE,
field.type = NULL,
field.label = NULL,
2024-02-27 13:20:21 +01:00
field.label.attr = "label",
field.validation = NULL,
metadata = names(REDCapCAST::redcapcast_meta),
convert.logicals = TRUE) {
if (convert.logicals) {
# Labels/attributes are saved
# labels <- lapply(data, \(.x){
# get_attr(.x, attr = NULL)
# })
data <- data |>
## Converts logical to factor, which overwrites attributes
dplyr::mutate(dplyr::across(dplyr::where(is.logical), as_factor))
# Old attributes are appended
# data <- purrr::imap(no_attr,\(.x,.i){
# attributes(.x) <- c(attributes(.x),labels[[.i]])
# .x
# }) |>
# dplyr::bind_cols()
}
## Handles the odd case of no id column present
if (add.auto.id) {
data <- dplyr::tibble(
record_id = seq_len(nrow(data)),
data
)
# set_attr(data$record_id,label="ID",attr="label")
message("A default id column has been added")
}
## ---------------------------------------
## Building the data dictionary
## ---------------------------------------
## skeleton
dd <- data.frame(matrix(ncol = length(metadata), nrow = ncol(data))) |>
stats::setNames(metadata) |>
dplyr::tibble()
## form_name and field_name
if (!is.null(form.sep)) {
2024-10-24 11:41:48 +02:00
if (form.sep != "") {
parts <- strsplit(names(data), split = form.sep)
## form.sep should be unique, but handles re-occuring pattern (by only considering first or last) and form.prefix defines if form is prefix or suffix
## The other split part is used as field names
if (form.prefix) {
dd$form_name <- clean_redcap_name(Reduce(c, lapply(parts, \(.x) .x[[1]])))
dd$field_name <- Reduce(c, lapply(parts, \(.x) paste(.x[seq_len(length(.x))[-1]], collapse = form.sep)))
2024-10-24 11:41:48 +02:00
} else {
dd$form_name <- clean_redcap_name(Reduce(c, lapply(parts, \(.x) .x[[length(.x)]])))
dd$field_name <- Reduce(c, lapply(parts, \(.x) paste(.x[seq_len(length(.x) - 1)], collapse = form.sep)))
2024-10-24 11:41:48 +02:00
}
} else {
dd$form_name <- "data"
dd$field_name <- gsub(" ", "_", tolower(colnames(data)))
}
2024-10-24 11:41:48 +02:00
} else {
## if no form name prefix, the colnames are used as field_names
dd$field_name <- gsub(" ", "_", tolower(colnames(data)))
2024-10-24 11:41:48 +02:00
if (is.null(form.name)) {
dd$form_name <- "data"
} else {
2024-10-24 11:41:48 +02:00
if (length(form.name) == 1 || length(form.name) == nrow(dd)) {
dd$form_name <- form.name
} else {
stop("Length of supplied 'form.name' has to be one (1) or ncol(data).")
}
}
}
## field_label
if (is.null(field.label)) {
dd$field_label <- data |>
sapply(function(x) {
get_attr(x, attr = field.label.attr)
})
dd <-
dd |> dplyr::mutate(field_label = dplyr::if_else(is.na(field_label),
field_name, field_label
2024-02-27 13:20:21 +01:00
))
} else {
2024-02-27 13:20:21 +01:00
if (length(field.label) == 1 || length(field.label) == nrow(dd)) {
dd$field_label <- field.label
} else {
stop("Length of supplied 'field.label' has to be one (1) or ncol(data).")
}
}
data_classes <- do.call(c, lapply(data, \(.x)class(.x)[1]))
## field_type
if (is.null(field.type)) {
dd$field_type <- "text"
dd <-
2024-02-27 13:20:21 +01:00
dd |> dplyr::mutate(field_type = dplyr::if_else(data_classes == "factor",
"radio", field_type
))
} else {
2024-02-27 13:20:21 +01:00
if (length(field.type) == 1 || length(field.type) == nrow(dd)) {
dd$field_type <- field.type
} else {
stop("Length of supplied 'field.type' has to be one (1) or ncol(data).")
}
}
## validation
if (is.null(field.validation)) {
dd <-
dd |> dplyr::mutate(
text_validation_type_or_show_slider_number = dplyr::case_when(
data_classes == "Date" ~ paste0("date_", date.format),
data_classes ==
"hms" ~ "time_hh_mm_ss",
## Self invented format after filtering
data_classes ==
"POSIXct" ~ paste0("datetime_", date.format),
data_classes ==
"numeric" ~ "number"
)
)
} else {
2024-02-27 13:20:21 +01:00
if (length(field.validation) == 1 || length(field.validation) == nrow(dd)) {
dd$text_validation_type_or_show_slider_number <- field.validation
} else {
2024-02-27 13:20:21 +01:00
stop("Length of supplied 'field.validation'
has to be one (1) or ncol(data).")
}
}
## choices
factor_levels <- data |>
lapply(function(x) {
if (is.factor(x)) {
## Custom function to ensure factor order and keep original values
## Avoiding refactoring to keep as much information as possible
lvls <- sort(named_levels(x))
2024-02-27 13:20:21 +01:00
paste(
paste(lvls,
names(lvls),
2024-02-27 13:20:21 +01:00
sep = ", "
),
collapse = " | "
)
} else {
NA
}
}) |>
(\(x)do.call(c, x))()
dd <-
dd |> dplyr::mutate(
select_choices_or_calculations = dplyr::if_else(
is.na(factor_levels),
select_choices_or_calculations,
factor_levels
)
)
out <- list(
data = data |>
hms2character() |>
stats::setNames(dd$field_name),
meta = dd
)
class(out) <- c("REDCapCAST",class(out))
out
}
#' Guess time variables based on naming pattern
#'
#' @description
#' This is for repairing data with time variables with appended "1970-01-01"
#'
#'
#' @param data data.frame or tibble
#' @param validate.time Flag to validate guessed time columns
#' @param time.var.sel.pos Positive selection regex string passed to
#' `gues_time_only_filter()` as sel.pos.
#' @param time.var.sel.neg Negative selection regex string passed to
#' `gues_time_only_filter()` as sel.neg.
#'
#' @return data.frame or tibble
#' @export
#'
#' @examples
#' redcapcast_data |> guess_time_only(validate.time = TRUE)
guess_time_only <- function(data,
validate.time = FALSE,
time.var.sel.pos = "[Tt]i[d(me)]",
time.var.sel.neg = "[Dd]at[eo]") {
if (validate.time) {
return(data |> guess_time_only_filter(validate = TRUE))
}
### Only keeps the first class, as time fields (POSIXct/POSIXt) has two
### classes
data |> time_only_correction(
sel.pos = time.var.sel.pos,
sel.neg = time.var.sel.neg
)
}
### Completion
#' Completion marking based on completed upload
#'
#' @param upload output list from `REDCapR::redcap_write()`
#' @param ls output list from `ds2dd_detailed()`
#'
#' @return list with `REDCapR::redcap_write()` results
2024-02-27 13:20:21 +01:00
mark_complete <- function(upload, ls) {
data <- ls$data
meta <- ls$meta
forms <- unique(meta$form_name)
2024-02-27 13:20:21 +01:00
cbind(
data[[1]][data[[1]] %in% upload$affected_ids],
data.frame(matrix(2,
ncol = length(forms),
nrow = upload$records_affected_count
))
) |>
stats::setNames(c(names(data)[1], paste0(forms, "_complete")))
}
#' Helper to auto-parse un-formatted data with haven and readr
#'
#' @param data data.frame or tibble
#' @param guess_type logical to guess type with readr
#' @param col_types specify col_types using readr semantics. Ignored if guess_type is TRUE
#' @param locale option to specify locale. Defaults to readr::default_locale().
#' @param ignore.vars specify column names of columns to ignore when parsing
#' @param ... ignored
#'
#' @return data.frame or tibble
#' @export
#'
#' @examples
#' \dontrun{
#' mtcars |>
#' parse_data() |>
#' str()
#' }
parse_data <- function(data,
guess_type = TRUE,
col_types = NULL,
locale = readr::default_locale(),
ignore.vars = "cpr",
...) {
if (any(ignore.vars %in% names(data))) {
ignored <- data[ignore.vars]
} else {
ignored <- NULL
}
## Parses haven data by applying labels as factors in case of any
if (do.call(c, lapply(data, (\(x)inherits(x, "haven_labelled")))) |> any()) {
data <- data |>
as_factor()
}
## Applying readr cols
if (is.null(col_types) && guess_type) {
if (do.call(c, lapply(data, is.character)) |> any()) {
data <- data |> readr::type_convert(
locale = locale,
col_types = readr::cols(.default = readr::col_guess())
)
}
} else {
data <- data |> readr::type_convert(
locale = locale,
col_types = readr::cols(col_types)
)
}
if (!is.null(ignored)) {
data[ignore.vars] <- ignored
}
data
}
#' Convert vector to factor based on threshold of number of unique levels
#'
#' @description
#' This is a wrapper of forcats::as_factor, which sorts numeric vectors before
#' factoring, but levels character vectors in order of appearance.
#'
#'
#' @param data vector or data.frame column
#' @param unique.n threshold to convert class to factor
#'
#' @return vector
#' @export
#' @importFrom forcats as_factor
#'
#' @examples
#' \dontrun{
#' sample(seq_len(4), 20, TRUE) |>
#' var2fct(6) |>
#' summary()
#' sample(letters, 20) |>
#' var2fct(6) |>
#' summary()
#' sample(letters[1:4], 20, TRUE) |> var2fct(6)
#' }
var2fct <- function(data, unique.n) {
if (length(unique(data)) <= unique.n) {
as_factor(data)
} else {
data
}
}
#' Applying var2fct across data set
#'
#' @description
#' Individual thresholds for character and numeric columns
#'
#' @param data dataset. data.frame or tibble
#' @param numeric.threshold threshold for var2fct for numeric columns. Default
#' is 6.
#' @param character.throshold threshold for var2fct for character columns.
#' Default is 6.
#'
#' @return data.frame or tibble
#' @export
#'
#' @examples
#' mtcars |> str()
#' \dontrun{
#' mtcars |>
#' numchar2fct(numeric.threshold = 6) |>
#' str()
#' }
numchar2fct <- function(data, numeric.threshold = 6, character.throshold = 6) {
data |>
dplyr::mutate(
dplyr::across(
dplyr::where(is.numeric),
\(.x){
var2fct(data = .x, unique.n = numeric.threshold)
}
),
dplyr::across(
dplyr::where(is.character),
\(.x){
var2fct(data = .x, unique.n = character.throshold)
}
)
)
}