REDCapCAST/R/utils.r

417 lines
12 KiB
R
Raw Normal View History

#' focused_metadata
#' @description Extracts limited metadata for variables in a dataset
#' @param metadata A dataframe containing metadata
#' @param vars_in_data Vector of variable names in the dataset
#' @return A dataframe containing metadata for the variables in the dataset
#' @export
#'
2023-03-06 14:36:41 +01:00
focused_metadata <- function(metadata, vars_in_data) {
if (any(c("tbl_df", "tbl") %in% class(metadata))) {
metadata <- data.frame(metadata)
}
field_name <- grepl(".*[Ff]ield[._][Nn]ame$", names(metadata))
field_type <- grepl(".*[Ff]ield[._][Tt]ype$", names(metadata))
2023-03-06 14:36:41 +01:00
fields <-
metadata[!metadata[, field_type] %in% c("descriptive", "checkbox") &
metadata[, field_name] %in% vars_in_data,
field_name]
2023-03-06 14:36:41 +01:00
# Process checkbox fields
if (any(metadata[, field_type] == "checkbox")) {
2023-03-06 14:36:41 +01:00
# Getting base field names from checkbox fields
vars_check <-
sub(pattern = "___.*$", replacement = "", vars_in_data)
2023-03-06 14:36:41 +01:00
# Processing
checkbox_basenames <-
metadata[metadata[, field_type] == "checkbox" &
metadata[, field_name] %in% vars_check,
field_name]
2023-03-06 14:36:41 +01:00
fields <- c(fields, checkbox_basenames)
2023-03-06 14:36:41 +01:00
}
# Process instrument status fields
form_names <-
unique(metadata[, grepl(".*[Ff]orm[._][Nn]ame$",
names(metadata))][metadata[, field_name]
%in% fields])
2023-03-06 14:36:41 +01:00
form_complete_fields <- paste0(form_names, "_complete")
2023-03-06 14:36:41 +01:00
fields <- c(fields, form_complete_fields)
2023-03-06 14:36:41 +01:00
# Process survey timestamps
timestamps <-
intersect(vars_in_data, paste0(form_names, "_timestamp"))
if (length(timestamps)) {
timestamp_fields <- timestamps
2023-03-06 14:36:41 +01:00
fields <- c(fields, timestamp_fields)
2023-03-06 14:36:41 +01:00
}
# Process ".*\\.factor" fields supplied by REDCap's export data R script
if (any(grepl("\\.factor$", vars_in_data))) {
factor_fields <-
do.call("rbind",
apply(fields,
1,
function(x, y) {
field_indices <- grepl(paste0("^", x[1], "\\.factor$"), y)
if (any(field_indices))
data.frame(
field_name = y[field_indices],
form_name = x[2],
stringsAsFactors = FALSE,
row.names = NULL
)
},
y = vars_in_data))
fields <- c(fields, factor_fields[, 1])
2023-03-06 14:36:41 +01:00
}
metadata[metadata[, field_name] %in% fields, ]
2023-03-06 14:36:41 +01:00
}
#' clean_redcap_name
#' @description
#' Stepwise removal on non-alphanumeric characters, trailing white space,
#' substitutes spaces for underscores and converts to lower case.
#' Trying to make up for different naming conventions.
#'
#' @param x vector or data frame for cleaning
#'
#' @return vector or data frame, same format as input
#' @export
#'
clean_redcap_name <- function(x){
gsub(" ", "_",
gsub("[' ']$","",
gsub("[^a-z0-9' '_]", "",
tolower(x)
)))}
#' Sanitize list of data frames
#'
#' Removing empty rows
#' @param l A list of data frames.
#' @param generic.names A vector of generic names to be excluded.
#'
#' @return A list of data frames with generic names excluded.
#'
#' @export
#'
#'
sanitize_split <- function(l,
generic.names = c(
"record_id",
"redcap_event_name",
"redcap_repeat_instrument",
"redcap_repeat_instance"
)) {
lapply(l, function(i) {
if (ncol(i) > 2) {
s <- data.frame(i[, !colnames(i) %in% generic.names])
i[!apply(is.na(s), MARGIN = 1, FUN = all),]
} else {
i
}
})
}
#' Match fields to forms
#'
#' @param metadata A data frame containing field names and form names
#' @param vars_in_data A character vector of variable names
#'
#' @return A data frame containing field names and form names
#'
#' @export
#'
#'
match_fields_to_form <- function(metadata, vars_in_data) {
field_form_name <- grepl(".*([Ff]ield|[Ff]orm)[._][Nn]ame$",names(metadata))
field_type <- grepl(".*[Ff]ield[._][Tt]ype$",names(metadata))
fields <- metadata[!metadata[,field_type] %in% c("descriptive", "checkbox"),
field_form_name]
names(fields) <- c("field_name", "form_name")
# Process instrument status fields
2023-04-13 10:57:04 +02:00
form_names <- unique(metadata[,grepl(".*[Ff]orm[._][Nn]ame$",
names(metadata))])
form_complete_fields <- data.frame(
field_name = paste0(form_names, "_complete"),
form_name = form_names,
stringsAsFactors = FALSE
)
fields <- rbind(fields, form_complete_fields)
# Process survey timestamps
2023-01-16 09:49:17 +01:00
timestamps <-
intersect(vars_in_data, paste0(form_names, "_timestamp"))
if (length(timestamps)) {
timestamp_fields <- data.frame(
field_name = timestamps,
form_name = sub("_timestamp$", "", timestamps),
stringsAsFactors = FALSE
)
fields <- rbind(fields, timestamp_fields)
}
# Process checkbox fields
if (any(metadata[,field_type] == "checkbox")) {
checkbox_basenames <- metadata[metadata[,field_type] == "checkbox",
field_form_name]
checkbox_fields <-
2023-01-16 09:49:17 +01:00
do.call("rbind",
apply(checkbox_basenames,
1,
function(x, y)
data.frame(
field_name =
y[grepl(paste0("^", x[1], "___((?!\\.factor).)+$"),
y, perl = TRUE)],
2023-01-16 09:49:17 +01:00
form_name = x[2],
stringsAsFactors = FALSE,
row.names = NULL
),
y = vars_in_data))
fields <- rbind(fields, checkbox_fields)
}
# Process ".*\\.factor" fields supplied by REDCap's export data R script
if (any(grepl("\\.factor$", vars_in_data))) {
factor_fields <-
2023-01-16 09:49:17 +01:00
do.call("rbind",
apply(fields,
1,
function(x, y) {
field_indices <- grepl(paste0("^", x[1], "\\.factor$"), y)
if (any(field_indices))
data.frame(
field_name = y[field_indices],
form_name = x[2],
stringsAsFactors = FALSE,
row.names = NULL
)
},
y = vars_in_data))
fields <- rbind(fields, factor_fields)
}
fields
2023-01-16 09:49:17 +01:00
}
#' Split a data frame into separate tables for each form
#'
#' @param table A data frame
#' @param universal_fields A character vector of fields that should be included
#' in every table
#' @param fields A two-column matrix containing the names of fields that should
#' be included in each form
#'
#' @return A list of data frames, one for each non-repeating form
#'
#' @export
#'
#' @examples
#' # Create a table
#' table <- data.frame(
#' id = c(1, 2, 3, 4, 5),
#' form_a_name = c("John", "Alice", "Bob", "Eve", "Mallory"),
#' form_a_age = c(25, 30, 25, 15, 20),
#' form_b_name = c("John", "Alice", "Bob", "Eve", "Mallory"),
#' form_b_gender = c("M", "F", "M", "F", "F")
#' )
#'
#' # Create the universal fields
#' universal_fields <- c("id")
#'
#' # Create the fields
#' fields <- matrix(
#' c("form_a_name", "form_a",
#' "form_a_age", "form_a",
#' "form_b_name", "form_b",
#' "form_b_gender", "form_b"),
#' ncol = 2, byrow = TRUE
#' )
#'
#' # Split the table
#' split_non_repeating_forms(table, universal_fields, fields)
2023-01-16 09:49:17 +01:00
split_non_repeating_forms <-
function(table, universal_fields, fields) {
forms <- unique(fields[[2]])
2023-01-16 09:49:17 +01:00
x <- lapply(forms,
function (x) {
table[names(table) %in% union(universal_fields,
fields[fields[, 2] == x, 1])]
2023-01-16 09:49:17 +01:00
})
2023-01-16 09:49:17 +01:00
structure(x, names = forms)
2023-01-16 09:49:17 +01:00
}
2023-07-04 16:03:06 +02:00
#' Extended string splitting
#'
#' Can be used as a substitute of the base function. Main claim to fame is
#' easing the split around the defined delimiter, see example.
#' @param x data
#' @param split delimiter
#' @param type Split type. Can be c("classic", "before", "after", "around")
#' @param perl perl param from strsplit()
#' @param ... additional parameters are passed to base strsplit handling splits
#'
#' @return list
#' @export
#'
#' @examples
#' test <- c("12 months follow-up", "3 steps", "mRS 6 weeks", "Counting to 231 now")
#' strsplitx(test,"[0-9]",type="around")
strsplitx <- function(x,
split,
type = "classic",
perl = FALSE,
...) {
if (type == "classic") {
# use base::strsplit
out <- base::strsplit(x = x, split = split, perl = perl, ...)
} else if (type == "before") {
# split before the delimiter and keep it
out <- base::strsplit(x = x,
split = paste0("(?<=.)(?=", split, ")"),
perl = TRUE,
...)
} else if (type == "after") {
# split after the delimiter and keep it
out <- base::strsplit(x = x,
split = paste0("(?<=", split, ")"),
perl = TRUE,
...)
} else if (type == "around") {
# split around the defined delimiter
out <- base::strsplit(gsub("~~", "~", # Removes double ~
gsub("^~", "", # Removes leading ~
gsub(
# Splits and inserts ~ at all delimiters
paste0("(", split, ")"), "~\\1~", x
))), "~")
} else {
# wrong type input
stop("type must be 'classic', 'after', 'before' or 'around'!")
}
out
}
#' Convert single digits to words
#'
#' @param x data. Handle vectors, data.frames and lists
#' @param lang language. Danish (da) and English (en), Default is "en"
#' @param neutrum for numbers depending on counted word
#' @param everything flag to also split numbers >9 to single digits
#'
#' @return returns characters in same format as input
#' @export
#'
#' @examples
#' d2w(c(2:8,21))
#' d2w(data.frame(2:7,3:8,1),lang="da",neutrum=TRUE)
#'
#' ## If everything=T, also larger numbers are reduced.
#' ## Elements in the list are same length as input
#' d2w(list(2:8,c(2,6,4,23),2), everything=TRUE)
#'
d2w <- function(x, lang = "en", neutrum=FALSE, everything=FALSE) {
# In Danish the written 1 depends on the counted word
if (neutrum) nt <- "t" else nt <- "n"
# A sapply() call with nested lapply() to handle vectors, data.frames and lists
convert <- function(x, lang, neutrum) {
zero_nine = data.frame(
num = 0:9,
en = c(
'zero',
'one',
'two',
'three',
'four',
'five',
'six',
'seven',
'eight',
'nine'
),
da = c(
"nul",
paste0("e",nt),
"to",
"tre",
"fire",
"fem",
"seks",
"syv",
"otte",
"ni"
)
)
wrd <- lapply(x, function(i) {
zero_nine[, tolower(lang)][zero_nine[, 1] == i]
})
sub <- lengths(wrd) == 1
x[sub] <- wrd[sub]
unlist(x)
}
# Also converts numbers >9 to single digits and writes out
# Uses strsplitx()
if (everything) {
out <- sapply(x,function(y){
do.call(c,lapply(y,function(z){
v <- strsplitx(z,"[0-9]",type="around")
Reduce(paste,sapply(v,convert,lang = lang, neutrum = neutrum))
}))
})
} else {
out <- sapply(x,convert,lang = lang, neutrum = neutrum)
}
if (is.data.frame(x)) out <- data.frame(out)
out
}