2023-03-07 15:38:28 +01:00
|
|
|
utils::globalVariables(c("redcap_wider",
|
|
|
|
"event.glue",
|
|
|
|
"inst.glue"))
|
2023-02-28 13:59:45 +01:00
|
|
|
|
|
|
|
#' @title Redcap Wider
|
|
|
|
#' @description Converts a list of REDCap data frames from long to wide format.
|
|
|
|
#' Handles longitudinal projects, but not yet repeated instruments.
|
2024-02-06 14:01:03 +01:00
|
|
|
#' @param data A list of data frames.
|
2023-03-07 15:38:28 +01:00
|
|
|
#' @param event.glue A dplyr::glue string for repeated events naming
|
|
|
|
#' @param inst.glue A dplyr::glue string for repeated instruments naming
|
2023-02-28 13:59:45 +01:00
|
|
|
#' @return The list of data frames in wide format.
|
|
|
|
#' @export
|
|
|
|
#' @importFrom tidyr pivot_wider
|
2023-03-07 15:38:28 +01:00
|
|
|
#' @importFrom tidyselect all_of
|
2024-02-06 14:01:03 +01:00
|
|
|
#' @importFrom purrr reduce
|
2023-02-28 13:59:45 +01:00
|
|
|
#'
|
|
|
|
#' @examples
|
2024-02-06 14:01:03 +01:00
|
|
|
#' # Longitudinal
|
|
|
|
#' list1 <- list(data.frame(record_id = c(1,2,1,2),
|
2023-02-28 13:59:45 +01:00
|
|
|
#' redcap_event_name = c("baseline", "baseline", "followup", "followup"),
|
|
|
|
#' age = c(25,26,27,28)),
|
|
|
|
#' data.frame(record_id = c(1,2),
|
|
|
|
#' redcap_event_name = c("baseline", "baseline"),
|
|
|
|
#' gender = c("male", "female")))
|
2024-02-06 14:01:03 +01:00
|
|
|
#' redcap_wider(list1)
|
|
|
|
#' # Simpel with two instruments
|
|
|
|
#' list2 <- list(data.frame(record_id = c(1,2),
|
|
|
|
#' age = c(25,26)),
|
|
|
|
#' data.frame(record_id = c(1,2),
|
|
|
|
#' gender = c("male", "female")))
|
|
|
|
#' redcap_wider(list2)
|
|
|
|
#' # Simple with single instrument
|
|
|
|
#' list3 <- list(data.frame(record_id = c(1,2),
|
|
|
|
#' age = c(25,26)))
|
|
|
|
#' redcap_wider(list3)
|
|
|
|
#' # Longitudinal with repeatable instruments
|
|
|
|
#' list4 <- list(data.frame(record_id = c(1,2,1,2),
|
|
|
|
#' redcap_event_name = c("baseline", "baseline", "followup", "followup"),
|
|
|
|
#' age = c(25,26,27,28)),
|
|
|
|
#' data.frame(record_id = c(1,1,1,1,2,2,2,2),
|
|
|
|
#' redcap_event_name = c("baseline", "baseline", "followup", "followup",
|
|
|
|
#' "baseline", "baseline", "followup", "followup"),
|
|
|
|
#' redcap_repeat_instrument = "walk",
|
|
|
|
#' redcap_repeat_instance=c(1,2,1,2,1,2,1,2),
|
|
|
|
#' dist = c(40, 32, 25, 33, 28, 24, 23, 36)),
|
|
|
|
#' data.frame(record_id = c(1,2),
|
|
|
|
#' redcap_event_name = c("baseline", "baseline"),
|
|
|
|
#' gender = c("male", "female")))
|
|
|
|
#'redcap_wider(list4)
|
2023-03-07 15:38:28 +01:00
|
|
|
redcap_wider <-
|
2024-02-06 14:01:03 +01:00
|
|
|
function(data,
|
2023-03-07 15:38:28 +01:00
|
|
|
event.glue = "{.value}_{redcap_event_name}",
|
|
|
|
inst.glue = "{.value}_{redcap_repeat_instance}") {
|
|
|
|
|
2024-02-07 10:09:36 +01:00
|
|
|
if (!is_repeated_longitudinal(data)) {
|
2024-02-06 14:01:03 +01:00
|
|
|
if (is.list(data)) {
|
|
|
|
if (length(data) == 1) {
|
|
|
|
out <- data[[1]]
|
|
|
|
} else {
|
|
|
|
out <- data |> purrr::reduce(dplyr::left_join)
|
|
|
|
}
|
|
|
|
} else if (is.data.frame(data)){
|
|
|
|
out <- data
|
|
|
|
}
|
|
|
|
|
2023-03-07 15:38:28 +01:00
|
|
|
|
2024-02-06 14:01:03 +01:00
|
|
|
} else {
|
2023-03-07 15:38:28 +01:00
|
|
|
|
2024-02-06 14:01:03 +01:00
|
|
|
id.name <- do.call(c, lapply(data, names))[[1]]
|
|
|
|
|
|
|
|
l <- lapply(data, function(i) {
|
2023-03-07 15:38:28 +01:00
|
|
|
rep_inst <- "redcap_repeat_instrument" %in% names(i)
|
|
|
|
|
|
|
|
if (rep_inst) {
|
|
|
|
k <- lapply(split(i, f = i[[id.name]]), function(j) {
|
|
|
|
cname <- colnames(j)
|
|
|
|
vals <-
|
|
|
|
cname[!cname %in% c(
|
|
|
|
id.name,
|
|
|
|
"redcap_event_name",
|
|
|
|
"redcap_repeat_instrument",
|
|
|
|
"redcap_repeat_instance"
|
|
|
|
)]
|
|
|
|
s <- tidyr::pivot_wider(
|
|
|
|
j,
|
|
|
|
names_from = "redcap_repeat_instance",
|
|
|
|
values_from = all_of(vals),
|
|
|
|
names_glue = inst.glue
|
|
|
|
)
|
|
|
|
s[!colnames(s) %in% c("redcap_repeat_instrument")]
|
|
|
|
})
|
|
|
|
i <- Reduce(dplyr::bind_rows, k)
|
|
|
|
}
|
|
|
|
|
|
|
|
event <- "redcap_event_name" %in% names(i)
|
2023-02-28 13:59:45 +01:00
|
|
|
|
2023-03-07 15:38:28 +01:00
|
|
|
if (event) {
|
|
|
|
event.n <- length(unique(i[["redcap_event_name"]])) > 1
|
2023-02-28 13:59:45 +01:00
|
|
|
|
2023-03-07 15:38:28 +01:00
|
|
|
i[["redcap_event_name"]] <-
|
|
|
|
gsub(" ", "_", tolower(i[["redcap_event_name"]]))
|
2023-02-28 13:59:45 +01:00
|
|
|
|
2023-03-07 15:38:28 +01:00
|
|
|
if (event.n) {
|
|
|
|
cname <- colnames(i)
|
|
|
|
vals <- cname[!cname %in% c(id.name, "redcap_event_name")]
|
2023-02-28 13:59:45 +01:00
|
|
|
|
2023-03-07 15:38:28 +01:00
|
|
|
s <- tidyr::pivot_wider(
|
|
|
|
i,
|
|
|
|
names_from = "redcap_event_name",
|
|
|
|
values_from = all_of(vals),
|
|
|
|
names_glue = event.glue
|
|
|
|
)
|
|
|
|
s[colnames(s) != "redcap_event_name"]
|
2024-02-06 14:01:03 +01:00
|
|
|
} else {
|
|
|
|
i[colnames(i) != "redcap_event_name"]
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
i
|
|
|
|
}
|
2023-03-07 15:38:28 +01:00
|
|
|
})
|
2023-02-28 13:59:45 +01:00
|
|
|
|
2024-02-06 14:01:03 +01:00
|
|
|
out <- data.frame(Reduce(f = dplyr::full_join, x = l))
|
|
|
|
}
|
2023-02-28 13:59:45 +01:00
|
|
|
|
2024-02-06 14:01:03 +01:00
|
|
|
out
|
2023-02-28 13:59:45 +01:00
|
|
|
}
|
2024-02-06 14:01:03 +01:00
|
|
|
|