REDCapCAST/R/easy_redcap.R

207 lines
5.3 KiB
R
Raw Normal View History

#' Retrieve project API key if stored, if not, set and retrieve
#'
#' @param key.name character vector of key name
#'
#' @return character vector
#' @importFrom keyring key_list key_get key_set
#' @export
get_api_key <- function(key.name) {
if (key.name %in% keyring::key_list()$service) {
keyring::key_get(service = key.name)
} else {
2024-02-06 14:00:26 +01:00
keyring::key_set(service = key.name, prompt = "Provide REDCap API key:")
keyring::key_get(service = key.name)
}
}
#' Secure API key storage and data acquisition in one
#'
#' @param project.name The name of the current project (for key storage with
2024-02-06 14:00:26 +01:00
#' `keyring::key_set()`, using the default keyring)
#' @param widen.data argument to widen the exported data
2024-02-05 14:46:20 +01:00
#' @param uri REDCap database API uri
#' @param ... arguments passed on to `REDCapCAST::read_redcap_tables()`
#'
#' @return data.frame or list depending on widen.data
#' @export
2024-02-27 13:20:21 +01:00
easy_redcap <- function(project.name, widen.data = TRUE, uri, ...) {
key <- get_api_key(key.name = paste0(project.name, "_REDCAP_API"))
out <- read_redcap_tables(
2024-02-05 14:46:20 +01:00
uri = uri,
2024-02-06 14:00:26 +01:00
token = key,
...
)
2024-02-27 13:20:21 +01:00
if (widen.data) {
2024-02-06 14:00:26 +01:00
out <- out |> redcap_wider()
}
out
}
#' REDCap read function to preserve field labels and all factor levels
#'
#' @description
#' This works very much as `read_redcap_tables()` and might end up there
#'
#'
#' @param uri REDCap database API uri
#' @param token API token
#' @param records records to download
#' @param fields fields to download
#' @param events events to download
#' @param forms forms to download
#' @param split_forms Whether to split "repeating" or "all" forms, default is
#' "all".
#'
#' @return data.frame or list
#' @export
#'
read_redcap_labelled <- function(uri,
token,
records = NULL,
fields = NULL,
events = NULL,
forms = NULL,
split_forms = "all") {
m <-
REDCapR::redcap_metadata_read(redcap_uri = uri, token = token)[["data"]]
# Tests
if (!is.null(fields)) {
fields_test <- fields %in% c(m$field_name, paste0(unique(m$form_name), "_complete"))
if (any(!fields_test)) {
print(paste0(
"The following field names are invalid: ",
paste(fields[!fields_test], collapse = ", "), "."
))
stop("Not all supplied field names are valid")
}
}
if (!is.null(forms)) {
forms_test <- forms %in% unique(m$form_name)
if (any(!forms_test)) {
print(paste0(
"The following form names are invalid: ",
paste(forms[!forms_test], collapse = ", "), "."
))
stop("Not all supplied form names are valid")
}
}
if (!is.null(events)) {
arm_event_inst <- REDCapR::redcap_event_instruments(
redcap_uri = uri,
token = token
)
event_test <- events %in% unique(arm_event_inst$data$unique_event_name)
if (any(!event_test)) {
print(paste0(
"The following event names are invalid: ",
paste(events[!event_test], collapse = ", "), "."
))
stop("Not all supplied event names are valid")
}
}
# Getting dataset
d <- REDCapR::redcap_read(
redcap_uri = uri,
token = token,
fields = fields,
events = events,
forms = forms,
records = records,
raw_or_label = "raw"
)[["data"]]
# Applying labels
d <- purrr::imap(d, \(.x, .i){
if (.i %in% m$field_name) {
# Does not handle checkboxes
out <- set_attr(.x,
label = clean_field_label(m$field_label[m$field_name == .i]),
attr = "label"
)
out
} else {
.x
}
}) |> dplyr::bind_cols()
d <- purrr::imap(d, \(.x, .i){
if (any(c("radio", "dropdown") %in% m$field_type[m$field_name == .i])) {
format_redcap_factor(.x, m$select_choices_or_calculations[m$field_name == .i])
} else {
.x
}
}) |> dplyr::bind_cols()
# Process repeat instrument naming
# Removes any extra characters other than a-z, 0-9 and "_", to mimic raw
# instrument names.
if ("redcap_repeat_instrument" %in% names(d)) {
d$redcap_repeat_instrument <- clean_redcap_name(d$redcap_repeat_instrument)
}
# Processing metadata to reflect focused dataset
m <- focused_metadata(m, names(d))
# Splitting
out <- REDCap_split(d,
m,
forms = split_forms,
primary_table_name = ""
)
sanitize_split(out)
}
#' Very simple function to remove rich text formatting from field label
#' and save the first paragraph ('<p>...</p>').
#'
#' @param data field label
#'
#' @return character vector
#' @export
#'
#' @examples
#' clean_field_label("<div class=\"rich-text-field-label\"><p>Fazekas score</p></div>")
clean_field_label <- function(data) {
out <- data |>
lapply(\(.x){
unlist(strsplit(.x, "</"))[1]
}) |>
lapply(\(.x){
splt <- unlist(strsplit(.x, ">"))
splt[length(splt)]
})
Reduce(c, out)
}
format_redcap_factor <- function(data, meta) {
lvls <- strsplit(meta, " | ", fixed = TRUE) |>
unlist() |>
lapply(\(.x){
splt <- unlist(strsplit(.x, ", "))
stats::setNames(splt[1], nm = paste(splt[-1], collapse = ", "))
}) |>
(\(.x){
Reduce(c, .x)
})()
set_attr(data, label = lvls, attr = "labels") |>
set_attr(data, label = "labelled", attr = "class") |>
as_factor()
}